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Abstract. We describe and illustrate methods for
obtaining a parsimonious sinusoidal series represen-
tation or model of biological time-series data. The
methods are also used to identify nonlinear systems
with unknown structure. A key aspect is a rapid search
for significant terms to include in the model for the
system or the time-series. For example, the methods
use fast and robust orthogonal searches for significant
frequencies in the time-series, and differ from conven-
tional Fourier series analysis in several important
respects. In particular, the frequencies in our resulting
sinusoidal series need not be commensurate, nor
integral multiples of the fundamental frequency corre-
sponding to the record length. Freed of these restric-
tions, the methods produce a more economical sinus-
oidal series representation (than a Fourier series),
finding the most significant frequencies first, and
automatically determine model order. The methods
are also capable of higher resolution than a conven-
tional Fourier series analysis. In addition, the methods
can cope with unequally-spaced or missing data, and
are applicable to time-series corrupted by noise. Fi-
nally, we compare one of our methods with a well-
known technique for resolving sinusoidal signals in
noise using published data for the test time-series.

1 Introduction

The estimation of power spectral density for time-
series analysis and the resolution of two or more
sinusoidal signals in the presence of noise are impor-
tant problems in biology. Here we describe and illus-
trate new procedures (Korenberg 1987, 1988) for
systematically constructing a parsimonious sinusoidal
series representation or model of biological time-series
data. The procedures are also applied below to identify
nonlinear systems of unknown structure.

Since the rediscovery of the fast Fourier transform
(FFT) by Cooley and Tukey (1965), there has been
great interest in the computation of power spectra of
time-series data (Box and Jenkins 1976). Much use has
been made of spectral analysis techniques in the life
sciences. For example, the techniques are frequently
applied to analyse electroencephalograms (EEG), e.g.
in epileptics (Sterman 1981). The FFT is often used to
obtain power spectra of respiration and heart rate, e.g.
in newborn or young infants (Nugent and Finley 1983).
However the FFT approach often works poorly for
short data records (Kay and Marple 1981; Mohanty
1986). Moreover, as is frequently pointed out (e.g.
Marmarelis and Marmarelis 1978), Fourier transform-
ing a signal is a numerically ill-posed problem. That is,
small amounts of noise corruption of the time-series
data can cause large errors in the frequency domain.
For this reason, various smoothing procedures have
been developed which involve the use of spectral
windows such as the Hamming, Hanning and Parzen
windows (Marmarelis and Marmarelis 1978; Mohanty
1986). These procedures reduce statistical error at the
expense of resolution, resulting in leakage or smearing
(Marmarelis and Marmarelis 1978) in the Fourier
series representation.

Consequently, various authors have investigated
the estimation of power spectral density using para-
metric methods (Mohanty 1986), e.g. autoregressive
moving average (ARMA), maximum entropy method,
and maximum likelihood estimator. In the first of these
approaches, the estimated spectrum is readily com-
puted once the parameters in an ARMA or an
autoregressive (AR) model have been identified. How-
ever, this identification must be carried out with only
the time-series data available, an “inaccessible input”
problem. Various procedures for doing this have been
developed (Box and Jenkins 1976). However, noise
corruption of the time-series data can seriously affect
the resolution of some of these procedures.
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The Prony and Pisarenko methods (Mohanty
1986) can be used to estimate a sum of sinusoidal
signals in the presence of noise. Mohanty (1986),
following Kay and Marple (1981), notes that the latter
two methods offer high resolution, but model order
must be selected (as also required by the AR and
maximum entropy methods), and a polynomial equa-
tion must be solved.

In the present paper two very simple approaches,
fast orthogonal search (Korenberg 1987, 1988) and
robust orthogonal search, are described (and the fast
search is illustrated) for finding the significant fre-
quencies in time-series data. Both approaches are ef-
fective with short data records, and cope with noisy,
missing and unequally-spaced data. For these reasons,
the methods appear suitable for analysis of biological
data, e.g. EEG, electromyogram (EMG), electroocu-
logram (EOG), electrocardiogram (ECG) and beat-to-
beat heart rate time-series. In particular, the methods
enable a parsimonious sinusoidal series representation
or model to be systematically developed for the time-
series. One reason for the parsimony of the represen-
tation is that the component frequencies need not be
commensurate nor integral multiples of a fundamental
frequency. This is an important difference from a
conventional Fourier series, where all frequencies must
be harmonics of a fundamental determined by the
record length. Yet the significant frequencies in a given
time-series may be unrelated to the record length.
Hence conventional Fourier series analysis seeks to
develop a sinusoidal series representation based on a
parameter (record length) which might not be effective
in producing an economical representation.

In both fast and robust orthogonal searches, the
most significant sinusoidal frequencies are found first.
Moreover simple techniques for measuring mean-
square error and its potential reduction at any stage
are used in determining when to stop further develop-
ment of the representation, thereby automatically
establishing model order. The methods presented are
also capable of higher resolution than obtainable by
conventional Fourier series analysis. In simulations
below, we compare the performance of fast orthogonal
search with the Prony method for resolving a sum of
sinusoidal signals embedded in noise.

The application of fast orthogonal search (Koren-
berg 1987, 1988) and robust orthogonal search to time-
series analysis can best be understood by first consider-
ing how they are applied to system identification. For
the identification of nonlinear systems, Wiener (1958)
pioneered the use of the Gram-Schmidt process on a
functional expansion to produce an orthogonal series.
Wiener kernels in his orthogonal series were determin-
able in the time domain by the Lee-Schetzen (1965)
crosscorrelation formula or via the frequency domain

by the method of French and Butz (1973). Important
applications, particularly in neurophysiology (Mar-
marelis and Marmarelis 1978; Marmarelis and Naka
1972), and extensions (Palm and Poggio 1978) of
Wiener’s orthogonal approach have followed. Such
work has indeed motivated the present paper.

2 Fast Orthogonal Search and System Identification

2.1 System Model
Consider approximating a nonlinear system by the

difference equation model (Haber and Keviczky 1976;
Billings and Leontaritis 1982)

ym)=F[y(n—1),...,y(n—K),x(n), ..., x(n—L)] +e(n).
O]

Here F is a polynomial, x(n) is the system input, y(n)
is the system output, and e(n) is the equation error.
Assume the data record is defined for n=0,...,N.
Equation (1) can be expressed more concisely as

M
W)= 3 anpo(r)-+eln). @

Here the a,, are the difference equation coefficients,

Po(n)=1 ©)}

and the remaining p,(n) are chosen from the x and y
terms on the right side of (1) and cross-products thereof
(including powers):

Pu(m)=y(n—ky)...y(n—k)x(n—1,)...x(n—1) @
mz1, i20, 1=k =K,..,15ksK
j=0, 0<L<L,.,0sLsL.

The crucial selection of terms is now discussed
briefly.

2.2 Selecting Model Terms by Orthogonal Search
Method

An orthogonal search method was developed (Koren-
berg 1985; Mcllroy 1986) for efficiently obtaining
difference equation models of nonlinear systems with
unknown structure. Using this method, we can build
up an economical series representation

Y= 3 gl el B

where the w,(n) are orthogonal over the data record,
and the g,, are the orthogonal expansion coefficients
(achieving a least-squares fit). Central to the orthog-
onal search method is first to use Gram-Schmidt
orthogonalization to construct, from each candidate
term, a function which is orthogonal to all previously




chosen terms. Then the reduction in mean-square error
achievable by selecting any given candidate is readily
obtained from the norm of the corresponding orthog-
onal function and the orthogonal expansion coeffi-
cient. More precisely, suppose a further term
a4 1P+ 1(n) is to be added to the right side of the
model in (2). Then the mean-square error (of the model
fit) will be reduced by the amount

OM+1)=g5 Wi+, (). (©)

Here the overbar denotes the time-average from
n=0ton=N.

To expand the difference equation model by a
further term using the orthogonal search method
(Korenberg 1985; Mcllroy 1986), evaluate the quantity
Q in (6) for each candidate addition. Choose the
candidate for which Q is greatest, since this addition
will result in the greatest reduction in mean-square
error. By continuing in this way, it is possible to
efficiently construct accurate parsimonious models of
real systems, particularly if a threshold level is used to
reject unsuitable terms (Mcllroy 1986).

However, the creation of the orthogonal functions
w,(n) in (5) is expensive in computing time and
memory, and is avoided if model terms are selected by
the fast orthogonal search.

2.3 Selecting Model Terms by Fast Orthogonal Search

Fast orthogonal search was developed (Korenberg
1987, 1988) as a more efficient method of building
models of time-series and of systems with unknown
structure. Only the essential details for present pur-
poses are summarized here. The method uses a Chol-
esky decomposition as follows. The orthogonal expan-
sion coefficients in (5) are given by

_ C(m) _

Em= D(m,m) m—O,...,M, (7)
where

D(0,0)=1, ®)
Dm,0)=p,(n), m=1,...M, ©)

R r—1

D(m, r)=p{n)p,(n)— ,-;o a,:D(m, 1)
m=1,...M;r=1,...m, (10
= [l’)((':":)) m=1,..,M;r=0,...m—1, (i1
CO)=y(n), (12)

Clm) = a5, €O m=1,. M. (13)

If the g,, and a,,, were known, the coefficients a,, in
(2) could be obtained by the following formula (K oren-
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berg et al. 1988a):

M
4= 3 8 (144)
i=m
where
V=1, (14B)
i-1
v=— Z a,v,, i=m+1,.. .M. (14C)

Suppose that the model terms p,(n) had already
been selected. Then, the o, could be calculated from
the following pseudocode, which achieves a Cholesky
factorization:

D(0,0)=1

FORm=1 TOM

Calculate D(m,0) from (9)
NEXT m

FORm=1TO M

FOR r=0TO m—1
Calculate a,, from (11)
Calculate D(m,r+ 1) using (10)
NEXT r

NEXT m.

Then C(m) could be solved for recursively from (12)
and (13), m=0,...,M, and the g, follow from (7).
Finally, the required coefficients a,, in (2) could be
obtained from (14).

However in practice it is efficient to build up the
model by selecting one further term at a time, and we
achieve this by the following departure from the above.
It can be shown (Korenberg 1987) that the mean-
square error (of the model fit)

—_——
ms.e.= (y(n)— m;o aum(")) (19

is equivalently
— M
mse.=y*(m— ¥ giD(m,m). (16)
m=0

Suppose that a,p,(n) was the last term added to
the model of (2). Then the addition of this term reduced
the mean-square error by the amount

QM)=g},D(M, M). an

Equation (17) makes it possible to assess rapidly
the benefit from adding any given candidate term to
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the model, without requiring the creation of the
orthogonal functions w,(n). Consider screening the
candidates for p,(n) where M>1. For each such
candidate, use the equations in this subsection to
calculate the corresponding g,, and D(M, M), and thus
measure the effectiveness of the candidate using (17).
The candidate with largest Q value is selected (option-
ally, subject to exceeding a specified positive threshold
level). [It is also useful to ensure that D(M, M) exceeds
a specified positive threshold level. Avoiding candi-
dates unable to meet the latter threshold requirement
prevents division by neglegibly small numbers in (7)
and (11), with resulting inaccuracies.] Suppose that we
have just chosen p,,(n). If the mean-square error given
by (16) is not acceptably small, then similarly search
the remaining candidate terms to determine the choice
for py+1(n), and so on. In this way, we can rapidly
construct an accurate, parsimonious model for a
system of unknown structure.

Consider again the search for py(n). In obtaining
D(M, M) and g, for a given candidate, we can avoid
repeating calculations done previously. For example,
the above pseudocode merely need be carried out with
m=M, and not for earlier values of m. Similarly, it
suffices to set m= M in (13) to obtain C(M) [and hence
gum from (7)]. Once the choice for py(n) has been made,
repeat the abbreviated pseudocode for the chosen
candidate, and similarly recalculate C(M) from (13)
and g, from (7). This is done to properly set the values
of the ay,, D(M, M), C(M) and g,, prior to searching for
D+ 1(n) (assuming the mean-square error given by (16)
is not acceptably small).

Also note that using (9), (10), (12), and (13) requires
knowledge of the time-averages appearing on the right
sides of these equations. Clearly the time-average on
the right side of (12) need be computed once only at the
outset and stored. The time-averages on the right sides
of (9), (13), and (10) when r =m, can also be computed
once and for all at the outset [letting p,,(n) in turn equal
each candidate term] and stored. Then, in order to be
able to test a given candidate term at any stage, merely
compute and store the time-average of that candidate
with the last chosen term. All other required time-
averages will be available from the previous rounds of
searching.

Finally, note that the lagged construction of the
difference equation terms p,,(n) in (4) makes it possible
to evaluate efficiently the time-averages on the right
sides of (9) and (10) (Korenberg 1988). This is done by
relating the time-averages to input and/or output
means and correlations and making small corrections
for the finite data record. Such an approach does not
require explicit creation of the terms p,(n), and
moreover is much less time-consuming than calculat-
ing each time-average independently.

3 Fast Orthogonal Search and Time-Series Analysis

3.1 Approximation by a Sum of Exponentials

Both fast and robust orthogonal searches can be used
directly to fit a given time-series by a sum of exponent-
ials (for example, when the time-series represents
samples from the complimentary solution of a linear
differential equation). Thus the time-series data is
treated as the system output, while the candidate terms
for approximating the output are the exponential
functions. In more detail, (3) still holds, and for m=>1

Puln)=exp(—n/B,,). (18)

For m=1,2,..., the B, are successively chosen by
searching through a set of candidate “time-constants”,
analogously as set out in Sect. 2.3. Finally, (14) can be
used to obtain the coefficients a,, of the exponential
series which (2) will represent.

The fast and robust orthogonal searches can
similarly be used to fit time-series with exponentially-
decaying sinusoids, logarithmic functions, splines,
polynomials, Walsh and gate functions, and a wide
variety of other functions. Of special interest are
periodic functions such as triangle and square-waves,
and trigonometric and hypergeometric functions.
Below we concentrate on obtaining parsimonious
sinusoidal series representations of time-series data
(Korenberg 1987).

3.2 Approximation by a Sinusoidal Series

In what follows, (2) represents a sinusoidal series
representation which is systematically constructed for
the time-series data y(n), n=0,..., N. (The number of
data points need not be a power of two, and padding of
the time-series is unnecessary.) Equation (3) still holds
and for i=1,2, ...

Pai- (n)=coswn, (19)
pa(n)=sinwn. (20)

For simplicity, we assume initially that the time-
series data is equally spaced. (Below we will consider a
simple modification to cope with missing or unequally-
spaced data.)

The w; are determined successively by searching
through a set of candidate frequencies w 4, wg, ... which
need not be commensurate. It can be shown (Koren-
berg 1987) that adding the i-th term pair

Ti=ay;-1P2i- (1) +ay;p5{n) (21

to the sinusoidal series model reduces the mean-square
error by the amount

Q:()=g3:- \D(2i—1,2i—1)+g3:D(2i, 2i). 22




In (21), a,;-, and a,; are respectively the cosine and
sine amplitudes. At the stage of adding the term pair
in (21), M =2i.

Thus, begin by introducing a constant into the
sinusoidal series using (3), and obtain g, from (7), (8),
(12). Then, to find w,, for each candidate frequency w,,
g, ... evaluate Q,(1) using (22). Finally, set , equal to
the candidate frequency with largest Q, value (option-
ally, subject to exceeding a threshold level). If the
mean-square error given by (16) (with M =2) is not an
acceptably small percentage of the variance of the
time-series, then search for a value for w,, and so on. In
general to find w,, i=1,2,..., for each candidate
frequency not previously selected evaluate Q,(i).
Choose the candidate for which Q,(i) is largest (again,
optionally, subject to exceeding a threshold level).
(Also, we again wish to ensure that, for each model
term, D(m,m) is not neglegibly small.) Continue the
process unless the mean-square error given by (16)
(with M =2i) is acceptably small, or the model has
reached the maximum size allowable. The process may
also be terminated if no remaining candidate frequency
can cause a reduction in mean-square error exceeding
a specified threshold value. At this point (14) can be
used to find the coefficients q,, in the sinusoidal series
model represented by (2). The identified model can
then provide a synthesized approximation to the
original time-series. Since this approximation is con-
structed with only the most significant frequencies
in the time-series, it tends to be far less noisy than the
original data (see example below).

Recall that at the stage of adding the i-th term
pair, M =2i. To evaluate Q,(i) for a given candidate
requires knowing the corresponding g,,, D(m, m), when
m=2i—1 and m=2i. To avoid repeating calculations
already performed, (13) and the pseudocode in Sect. 2.3
need be carried out merely for these two values of m. In

particular we can use the following abbreviated

pseudocode:

D(0,0)=1
FORm=M—-1TO M
Calculate D(m,0) from (9)
NEXT m
FORm=M-1TO M
FORr=0TO m—1
Calculate o, from (11)
Calculate D(m,r + 1) using (10)
NEXT r

NEXT m.

Suppose the choice for w; has just been determined.
Then carry out the abbreviated pseudocode immedi-

21

ately above, and (13) with m=M —1, M, using the
chosen candidate frequency to define the p,;_,(n) and
p24{n)in (19),(20). This is done to properly set the values
of the «,, Dmm), Cm) and g, m=2i—1,
2i (r=0, ..., m—1), prior to either searching for w,, ,
or terminating the process and using (14) to calculate
the final model of (2).

Use of (9), (10), (12), (13) requires knowing the time-
averages appearing on the right sides of these equ-
ations. The time-average on the right side of (12) (i.e.
the average of the time-series) need be computed only
once and then stored. Similarly, the time-average on
the right sides of (9), (13), and (10) when r=m, can be
calculated (and stored) once and for all at the outset,
letting p,(n) equal in turn the sine and cosine function
corresponding to each candidate frequency. Then
before using (9), (10), (13) in testing a new candidate
frequency, one merely computes the time-average of
the four sine and cosine pairs involving the candidate
frequency and the last chosen frequency. Thus suppose
; was the last sinusoidal frequency determined, and
we wish to test a given candidate (say w,) for w,, ;.
Then we first measure

sinw nsinw;n, cosw, nsinwn,

23

SINW,4NCOSWN,  COSW 4N COSWiH.

All other required time-averages will be available
from the previous rounds of searching. Moreover,
when the data is equally-spaced, the time-averages on
the right-sides of (9) and (10) are readily obtainable
(Korenberg 1987) using well-known formulas (Dwight
1960).

Further details are available (Korenberg 1987)
concerning the fast orthogonal search and the applic-
ation of this method and the orthogonal search
method to time-series analysis. Related techniques of
the present author have been applied to real time-series
data in projects supervised by him in the Department
of Electrical Engineering at Queen’s University, e.g.
Ho et al. (1987). In the latter study, to cope with
unequally-spaced data, the variable n on the right sides
of (19), (20) was replaced by the function t(n), which
corresponded to the actual timing of the n-th data
sample. The same strategy can be used to cope with
unequally-spaced or missing data in the fast and robust
orthogonal searches described in the present paper.

4 Example

The test time-series was listed in a study of various
spectral estimation techniques by Kay and Marple
(1981), and appears again in the review by Mohanty
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(1986). The 64-point real sample sequence was gen-
erated by adding a passband noise process to a sum of
sinusoids of fractional frequencies 0.1,0.2,and 0.21 and
amplitudes 0.1, 1, and 1 respectively. (Frequencies are
expressed as a fraction of the sampling frequency.) The
noise process had been colored by filtering white
Gaussian noise, and was centered at a frequency of
0.35. Both Kay and Marple (1981) and Mohanty (1986)
show the true power spectral density for the time-
series, and those estimated by various techniques
including the Prony method and its spectral line
variant.

As Kay and Marple (1981) point out, the sinusoidal
frequencies 0.2 and 0.21 are closer than the resolution
width of the FFT, whose nominal resolution in Hz is
1/64 of the sampling frequency. Indeed they found that
the FFT did not resolve these two frequencies.

Two tests of fast orthogonal search were conduc-
ted. Wefirst tested its ability to model both the narrow-
band and wide-band processes. Second, we tested its
ability to recover an accurate estimate of the time-
series prior to its corruption by the passband noise
process. In both tests, 100 candidate frequencies,
equally-spaced between 0 and 0.5 times the sampling
frequency, were searched and up to 20 distinct frequ-
encies were permitted in the final model. Note that fast
orthogonal search does not require the number of data
points to be a power of two, as happened here.

4.1 Modelling Narrow- and Wide-Band Processes

We first tested the capability of fast orthogonal search
to achieve accurate spectral estimation of narrow- and
wide-band processes. To do this, we set a low threshold
(0.2% of the time-series variance) as the minimum
reduction in mean square error required before a
further addition could be made to the model. Fast
orthogonal search estimated a constant (—2.86
x 1073) and selected 12 sinusoidal frequencies, result-
ing in a mean-square error equal to 0.483% of the time-
series variance. Frequency components were selected
in the following order (top number is fractional
frequency, middle and bottom numbers are sine and
cosine amplitude respectively):

For example, fast orthogonal search selected a first
frequency equal to 0.210, with a sine amplitude of 2.859
x 1072 and a cosine amplitude of 0.990. Notice fast
orthogonal search was able to resolve the fractional
frequencies 0.2 and 0.21, which the FFT was unable to
do (Kay and Marple 1981). The amplitude of the
sinusoidal components at fractional frequencies 0.1,
0.2, 0.21 were estimated as 0.099, 0.971, 0.990 by fast
orthogonal search (actual values were 0.1, 1, 1). The
corresponding Prony method estimates (Kay and
Marple 1981) of the fractional frequencies (0.100, 0.201,
0.209) and respective amplitudes (0.092, 1.276, 0.845)
were less accurate. Prony spectral line method esti-
mates (Kay and Marple 1981) of the fractional frequ-
encies 0.1,0.2,0.21 and corresponding amplitudes were
comparable to, but phase estimates were less accurate
than, fast orthogonal search estimates. Fast ortho-
gonal search also modelled the broad-band process
more accurately than either variant of the Prony
method. Each of the Prony variants selected 8 sinus-
oidal frequencies in total to model the narrow- and
broad-band processes.

4.2 Estimating the Noise-Free Time-Series

Here we attempt to recover the time-series as it
existed prior to corruption by the noise process. To do
this, we again applied fast orthogonal search to the test
time-series (hereafter called “noisy”). However, we
used a higher threshold (4% of the noisy time-series
variance) as the minimum reduction in mean-square
error required before a further addition could be made
to the model. Fast orthogonal search estimated a
constant (3.568 x 10™3) and selected two fractional
frequencies, resulting in a mean-square error of
13.39% (of the noisy time-series variance). In order, the
following frequencies, sine and cosine amplitudes were
selected (set out in the same style as before):

0.210 0.200
2983x1072  2.760x 1072 (29
1.027 0.997

Using the estimated constant, and the sinusoidal
components identified in (24), we synthesized our

0.210 0.200 0.365
2.859x1072 —1.829x 1073 0.172
0.990 0.971 —-0.191
0.295 0.415 0.330
0.122 —9.805x 1073 —3.289x10°2
8175x 1072 0.113 0.101

0.310 0.400 0.350

0.139 0.198 2.614x1072
—0.186 —6.653x1073 —-0.167

0.100 0.270 0.435
—1.162x 1073 5.617x 1072 1.236 x 1072

9.948 x 1072 —5.372x1072 —7.349x 1072




estimate z(n) of the noise-free time-series Z(n). We
defined the noise-free time-series by

Z(n)=0.1 cos(0.2rn) + cos(0.47n) + cos(0.42nn) (25)
and computed the signal-to-noise ratio

variance [Z(n)]

SNR = variance [z(n)—Z(n)] 26)
The synthesized estimate z(n) of the noise-free time-
series resulted in a SNR=142.81 (21.55dB). This
should be compared with the SNR of 6.63 (8.21 dB)
when the noisy time-series was used in place of z(n) in
(26). Thus fast orthogonal search can be used to reduce
dramatically the degree of noise corruption.

In summary, suppose it is desired to obtain accu-
rate spectral estimation of a signal via fast orthogonal
search. Then we use a low threshold for the minimum
reduction in mean-square error required before a
further addition can be made to the model. This results
in a final model with a low mean-square error. Suppose
instead we wish to synthesize an approximation of the
noise-free time series from noisy data. Then a higher
threshold is selected, and the final model will have a
larger mean-square error when compared with the
noisy time-series. This of course is desirable if one is to
avoid fitting the noise process corrupting the time-
series.

5 Robust Orthogonal Search

Our pseudocode in Sects. 2.3 and 3.2 for carrying out
the Cholesky factorization is ultimately founded
on Gram-Schmidt orthogonalization. The Gram-
Schmidt process is known to be less numerically-stable
than the modified Gram-Schmidt procedure (Rice
1966). Thus, by adapting the equations for carrying out
the modified Gram-Schmidt procedure, we can pro-
duce a more robust method for achieving a Cholesky
factorization.

Suppose again that the p,(n), m=0,..., M, form a
set of terms from which the orthogonal functions are to
be constructed. Under the modified Gram-Schmidt
procedure, one term is taken to be the first orthogonal
function and weighted amounts of this term are
subtracted from all remaining terms to form a new set.
One term is selected from the new set to be the second
orthogonal function, weighted amounts of this term
are subtracted from all remaining terms in the new set,
and so on. Let py(n) again be defined by (3), and let

POmy=p,(n), m=0,..,M. @7
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For j=0,...M—tand m=j+1,.., M, let
P V(n) =pn) — o0 PAn), (28)
where
_ PR)pPn)
™ ePm)
The p{(n) in the modified Gram-Schmidt procedure
are the orthogonal functions which take the place of
the wy(n) in the original Gram-Schmidt process. Thus,
it is easily shown that the m.s.e. in (15) is minimized
when
_ Y
()’
and the a,, are calculated from (14).

To obtain the a,,; and g, from (29), (30) efficiently,
define for j=0,...,.M, mk=j,...M

(29)

m=0,..,M (30)

m

D(m,k, j)=pP(m)pPAn), (31)
Clm, j)=yin)p(n). (32)
Note

D(m,k, j)=D(k,m, j).

Using (28), and an analogous equation obtained by
replacing m with k, and also (29), we obtain

i Dmpd ™ V) = p(m)pAn) — oy pDm)pP(n) (33)
or equivalently

D(m, k, j+1)=D(m, k, j)—a D(m, J, ),

j=0,..,M—1, mk=j+1,.. .M. 64
Moreover, it follows from (3), (27), and (31) that

D(0,0,0)=1 (35)
and for mk=1,...M
D(m,0,0)=p,(n), (36)
D(m, k,0)=p,(mp,n), (37
and from (29)
Omj= %‘D(m”]’]),

DG, ) (39)
j=0,...M—1, m=j+1,...M.

Next, from (28),

Hnpll* Ym) = ym)pn) ~ e, y(m)p(m)
and hence from (32)

Clm, j+1)=C(m, j}—0,,;C(, ),
j=0,...M—1, m=j+1,..,M.

(39)
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Moreover, from (3), (27), and (32), .
C(0,0)=y(n), (40)

Cm,0)=y(npn(n), m=1,...M. @1
And, from (30)32)

_ Cim,m) _
Bm= b(m—m,m) m=0,..,.M. 42)

We first use (34)+(38) to find the a,,;, for example
using the following pseudocode:

D(0,0,0)=1

FORm=1TO M

COMPUTE D(m,0,0) FROM (36)
FOR k=1TO m

Compute D(m, k,0) FROM (37)
NEXT k

NEXT m

FOR j=0TO M—1

FOR m=j+1 TO M
COMPUTE «,; FROM (38)
FOR k=j+1TO m

COMPUTE D(m,k, j+1) FROM (34)
NEXT k

NEXT m

NEXT j.

In fact, this pseudocode yields both the «,,; and the
D(m, m, m). This enables us to employ (39)42) to find
all the g,.. Then (14) can be used to find the q,, in (2).

5.1 System Identification

Recall that the orthogonal functions p{(n) correspond
to the wn) considered in the original Gram-Schmidt
process. Therefore, by (6) and (31), the reduction in
m.s.e. from adding term a,py(n) to the model is

O(M)=giD(M, M, M). “3)

Thus, to expand the model by a further term using
the robust orthogonal search, evaluate the quantity Q
for each candidate term, and select the candidate with
greatest Q value (optionally, subject to exceeding a
specified threshold level). Continuing in this way, we
can rapidly build up an accurate parsimonious model
for a system of unknown structure. Clearly many
similar strategies utilizing (43) to select terms can be set
down: e.g. considering two or more candidates at a
time.

Finally, note that, analogous to (16), the m.s.e. after
adding aypy(n) to the model is

ms.e. =y1—(n)— go g2D(m, m,m). (44)

The above pseudocode following (42) can be shor-
tened to avoid repetition of calculation already perfor-
med at earlier stages of the searching. Thus, suppose
that model terms up to m=M —1 have been selected.
Then in testing each candidate for p,(n), the above
pseudocode merely need be carried out with m=M:

D(0,0,0)=1

COMPUTE D(M,0,0) FROM (36)
FOR k=1TO M

COMPUTE D(M, k,0) FROM (37)
NEXT k

For j=0 TO M—1

COMPUTE a,,; FROM (38)

FOR k=j+1TO M

COMPUTE D(M, k, j+1) FROM (34)
NEXT k

NEXT .

We then set m=M in (39), (41), and (42) to obtain g,,
and thus measure the benefit of the candidate term via
(43). After the choice for p,(n) has been made, we carry
out the immediately above pseudocode once again for
the chosen candidate, and also redetermine g,,. This is
done to set the values of ay ;, D(M, M, M), C(M, M) and
g prior to either initiating the search for p,,, ,(n) or
stopping the process. Note that (44) can be used to
evaluate the m.s.e. in deciding when to terminate the
model development. In addition, a threshold level may
be set as the minimum reduction in mean-square error
required before a further addition can be made to the
model.

5.2 Time-Series Analysis

‘We next let y(n), n=0, ..., N be a given time-series. Let
(2) represent a sinusoidal series model which is to be
constructed for the time-series using the robust ortho-
gonal search. The procedure is analogous to the time-
series application of the fast orthogonal search set out
in Sect. 3.2, and for example, (19)(21) still hold. Adding
the i-th term pair on the right side of (21) to the model
reduces the mean-square error by the amount

0,()=gZi-\D(2i—1,2i— 1,2 — 1)+ g&,D(2i, 2i, 2i). (45)

This equation is used in place of (22). Again, at the stage
of adding the i-th term pair, M =2i.



To evaluate Q,(i) in (45) for a candidate frequency
requires knowing the corresponding g,, D(m,m,m)
when m=2i—1 and m=2i. For a given candidate
frequency, use the pseudocode immediately following
(42) with M=2i, and obtain «,; and D(m,m,m),
m=M—1, M; j=0,...,m—1. Note that the pseudo-
code merely need be carried out for m=M —1 and not
for earlier values of m. This is similarly true in using
(39), (41), (42), to obtain C(m,m) and thence g,
m=M-—1, M, in order to evaluate Q,(i) for the
candidate. Similarly obtain Q,(i) for all other candi-
date frequencies as yet unselected. Finally set w; equal
to the candidate for which Q,(i) is greatest (optionally,
subject to exceeding a threshold level). Also ensure that
D(m,m,m), m=M —1, M, is not negligible. Using the
chosen frequency for w,, redetermine ;s D(m, m, m),
C(m,m) and g,, m=M—1, M; j=0,...,m—1.

Next, evaluate the mean-square error via (44). Stop
the procedure if the mean-square error is acceptably
small, or if a pre-set limit on the number of model
terms has been reached. Model development may also
be terminated if no remaining candidate frequency can
cause a reduction in mean-square error exceeding a
specified threshold level. These criteria, optionally in
conjunction with an F-test, determine the final value
for M (ie. the model order) in the sinusoidal series
represented by (2). Equation (2) may then serve as an
economical sinusoidal series approximation revealing
the significant frequencies in the original time-series
data.

6 Discussion and Conclusion

The orthogonal search method (Korenberg 1985;
Mcllroy 1986) can be applied in many variations. For
example to increase speed, Mcllroy (1986) arranged
candidate difference equation terms into disjoint sub-
sets of (1) linear x terms, (2) linear y terms, (3) xx terms,
(4) yy terms, (5) xy terms. These subsets were searched
successively, rather than searching all candidate terms
together. Within a given subset, a candidate term was
permanently dropped from consideration if its poten-
tial reduction of mean-square error was less than a
specified percentage of the output mean-square.
Similar successive searches are readily implemented
using the fast and robust orthogonal algorithms
examined above.

Also note that an early selection of model terms is
possible for both system identification and time-series
analysis. For example in the latter application, when
searching for the first sinusoidal frequency, we
evaluated Q,(1) as a function of each candidate
frequency. We can use this function to select the model
frequencies at once. Simply choose the candidate
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frequency with largest Q,(1) value and all candidate
frequencies occurring at “relative maxima” of Q,(1),
which exceed a specified threshold level. A similar
strategy can be used to choose difference equation
terms, e.g. by first arranging them into subsets such as
(1) linear x terms, in order, (2) linear y terms, in order,
(3) terms of subset (1) multiplied by x(n), (4) terms of
subset (2) multiplied by x(n), and other remaining
subsets. Then evaluate Q(1) over the first subset and
select the terms in the subset occurring at the absolute
maximum and “relative maxima” which exceed a
threshold level. The next subset is searched in an
analogous fashion, and so on.

The fast and the robust orthogonal searches can
both be used to identify difference equation models of
many biological systems, without a priori knowledge
of system structure. With or without the searching
feature, they enable accurate identification of kernels in
functional expansions of nonlinear systems (Koren-
berg 1988). The robust method of carrying out the
Cholesky factorization is, moreover, suitable for accu-
rate kernel estimation of systems with long memory
length. This accuracy enables a more precise identific-
ation of cascades of alternating dynamic linear and
static nonlinear systems.

For example, if first and second linear systems, with
transfer functions G(w) and G,(w) respectively, are
separated by a static nonlinearity, then (Korenberg
1973)

_c Ho —op2)

1Gy(w)|=C, TH@R) (46)
_ . H ) |H(w/2)

|G, (@) =C, W (47)

Here C,, C, are constants and H(-) and H(-,-) are the
one- and two-dimensional Fourier transforms of the
first- and second-order Wiener kernels respectively.
The corresponding phases of the linear systems in the
cascade are, under fairly broad conditions,

{G(@)=/H(w, ), (48)
1Go(w)=[ H(w)—[ H{w, ). 9

[In practice, “c0” on the right sides of (48), (49) is
replaced by a large positive constant.] Thus, the
accurate estimation of Wiener kernels enables the
linear systems in the cascade to be identified from
(46)—49). The static nonlinearity is then readily measu-
red either graphically or by least-square fitting (Koren-
berg 1973; Korenberg et al. 1988b).

The time-series methods (Korenberg 1987,
1988) examined in the present paper provide good
resolution of frequencies even with short and noisy
data records. Moreover, the required order of the
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sinusoidal series model developed is automatically
determined, and no polynomial equation must’ be
solved. In future papers, we intend to apply this time-
series analysis to EEG, ECG, EMG and other biolog-
ical time-series data.
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