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Spectral Analysis of Heart Valve Sound
for Detection of Prosthetic
Heart Valve Diseases

Sang Hyun Kim', Hee Jong Lee’, Jac Man Huh',
and Byung Chul Chang3

The spectral analysis of heart valve sound is a noninvasive diagnostic method known to be
useful in evaluating the state of the heart valve function. This may provide early detection of
valve calcification, thrombus or destruction, since previous studies have shown that the dominant
Jfrequency peak moved to a high frequency area when natural heart valve leaflets were calcified,
stiffened or destroyed. However, it is important for a heart valve sound diagnostic system to
find a proper spectral analysis method on phonocardiography. Until now, conventional frequency
analyses such as the Fourier transform or autoregressive spectral estimation technique have been
used to estimate spectral components of a phonocardiogram, but they are inappropriate because
the signal frequency is assumed to remain constant during the transform interval. To overcome
this problem, in this study, FOS (Fast Orthogonal Search) & MUSIC (MUltiple Signal Classifi-
cation), which both appeared suitable for the analysis of biological data, were applied to pros-
thetic heart valve sound as the new heart valve sound spectral analysis methods. Five subjects
with normally functioning mechanical heart valves and a patient with a malfunctioning one were
selected to collect the heart valve sound signals. As a result, the second dominant peak frequency
proved to be important along with the first dominant peak frequency in identifying the valve
Junction. This study showed that the new heart valve sound spectral analysis method presented
in this paper may be an effective method in heart valve sound analysis. Further study using
this system in a large population of patients will aid in providing a diagnostic method in the
early detection of valve failure.
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A number of patients who receive prosthetic heart
valves are still subjected to replacement of the im-
planted valves or thrombolytic therapy because of
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valvular malfunction. It is important, therefore, to
clearly detect malfunction as soon as possible. Until
now, phonocardiograpy, echocardiograpy, and cine-
fluoroscopy have been used as noninvasive proce-
dures for evaluating valvular integrity. However,
sometimes these methods may be sensitive only to
malfunction of an advanced nature and as a result
are not totally reliable for early detection.
Spectral analysis of a heart sound offers another
means for diagnosis of valvular integrity. It is a
noninvasive technique which has been found to be
an effective method for monitoring the integrity of
native and prosthetic heart valves, as well as for in-
vestigating the relationship between the sounds of
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the heart and cardiovascular events. Since early de-
tection of valve thrombosis is imperative, sound
spectral analysis of prosthetic heart valves has been
studied extensively (Joo et al. 1983; Durand et al.
1986; Durand et al. 1990; Sava and McDonnell.,
1996). These studies demonstrated that sound spec-
tral analysis is an extremely useful diagnostic tool
for early detection of thrombosis in prosthetic heart
valves. Finding an appropriate spectral algorithm for
the early detection of valve failure is the most
important thing in spectral analysis of a heart valve.
However, standard frequency analyses such as the
Fourier transform or autoregressive spectral esti-
mation technique are inappropriate because the sig-
nal frequency is assumed to remain constant during
the transform interval.

Recently, the MUSIC (MUTtiple SIgnal Classifica-
tion) method (Korenberg, 1985; Korenberg, 1989)
and FOS (Fast Orthogonal Search) method (Kaveh
and Barabell, 1986) have been used for spectral
analysis, in which both appeared suitable for the
analysis of biological data. The earlier studies re-
ported that these methods were effective with short
data records and could cope with noisy, missing and

Table 1. List of patients

unequally-spaced data. But until now, these methods
have not been used in estimating spectral compo-
nents of a phonocardiogram. Therefore, in this study,
these methods were applied to prosthetic heart valve
sound as the new spectral analysis methods to over-
come the limits of conventional methods.

MATERIALS AND METHODS

Five patients with normally functioning heart
valves and one patient with a malfunctioning valve
were selected to collect heart valve sound signals.
The abnormal patient had a thrombus formation on
the mechanical heart valve and was subjected to
thrombolytic therapy. All patients had mitral valve
replacement and Table 1 shows the list of patients.

Recording procedure of heart sound
Fig. 1 schematically describes the recording pro-

cedure of the system. Heart sounds were recorded
during quiet respiration with the patient in a supine

Patient No. Birth year Sex

Valve type

Condition

Size
1950 F Hancock 29 mm normal
2 1961 F St-Jude 29 mm normal
3 1963 M St-Jude 27 mm normal
4 1934 M St-Jude 29 mm normal
5 1952 F Carbomedics 33 mm normal
6 1929 | Carbomedics 29 mm abnormal
O>___ ______ Amplifier AD
i & Filter Converter
Microphone
IBM PC Computer
Fig. 1. Process of recording the heart valve sounds
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position using a microphone transducer (E’for M,
White Plains, New York, USA). The microphone
was placed at the second left intercostal space. The
sound signals were amplified, filtered via a multi-
channel photographic recorder (E for M, White
Plains, New York, USA). The signals were filtered
out below 50 Hz and above 500 Hz. The frequency
response of the sound amplifier and microphone
combination was flat (within 1 db), between 80 and
300 hertz. The analog sound signal was then proc-
essed through a 12-bit data translation analog-to-
digital converter board (Data Translation, Marlboro,
Massachusetts, USA) contained in an IBM-PC/386
personal computer. The digital signal was filtered
out using a Butterworth filter below 50 Hz and
above 950 Hz. Recordings were made over a 10-
second interval at a sampling rate of 2 kHz. Each
data collection was stored on a computer hard disk.
In this study, a closing sound component of the
shape which occurred most frequently during record-
ing was selected. The average difference between
two components selected at random in terms of the
dominant peak frequency was less than 10%.

Algorithms of sound spectral analysis

MUltiple SIgnal Classification (MUSIC) meth-
od: In the MUSIC method, the signals are divided
into two subspaces, corresponding to the signal sub-
space and the noise subspace. With the MUSIC
method, a correlation matrix of N xN is formed and
its eigenvalues and eigenvectors are found. While
the Pisarenko method involves projection of the
signal vectors onto a single noise eigenvector, the
MUSIC method involves projection of the signal
onto the entire noise subspace.

If Py is defined as the projection of signal
subspace onto the noise subspace, Enise , the MUSIC
pseudospectrum is defined as

%c(eiw)=————-7r——l:—

w an‘se _1;1
= 1
TTWT Ehe Eib w M
where -
1
w=| ¢
)'(N:—l)w
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An alternative root-finding variation of the meth-
od called “root MUSIC” can be developed as
follows. Define the eigenfilter

E{2)=el0]+e;[1]z 7+ +elN—11z"" P

where the ef n] are components of the eigenvectors
~: . The denominator of (1) can then be written as

Euie=[ eu+1 eusz _e—;V] 3

The MUSIC pseudospectrum can therefore be ex-
pressed as

Pyusic(e™) = 1

3 E(DEW)

@

2%

Since the denominator goes to zero at z=e"
(i=1,2,--,M), the denominator polynomial has M
roots lying on the unit circle. Those M roots cor-
respond to the signal frequencies. Note that since
each eigenfilter Ey(z) is an (N-1)™ degree polyno-
mial, it has a total of N-1 roots. M of these roots
correspond to the £ and lie on the unit circle. The
other N-M-1 roots not on the unit circle are called
“spurious” roots and play no particular role in lo-
cating the spectral lines. In theory these roots are not
a problem, but in practice some of them may lie
close to the unit circle and could be mistakenly attri-
buted to signals. The polynomial E}Qc(z) used in
root MUSIC also has spurious roots. However, the
effect of adding the eigenfilter terms in (2) is to
move these spurious roots away from the unit circle.
Only roots of the eigenfilters lying on the unit circle
become roots of the polynomial F,ﬁc(z).

Fast Orthogonal Search (FOS) method: The
FOS method is capable of higher resolution than is
obtainable by conventional Fourier series analysis. It
is effective with short data records, and can cope
with noisy, missing and unequally-spaced data. It
enables a parsimonious sinusoidal series represen-
tation or model to be systematically developed for
the time series.

Consider approximating a nonlinear system by the
difference equation model.
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Ym=Flsn=1), = Kn=B,..5n, «

yx(n— L)+ e(n)

Equation (5) can be expressed more concisely as

Am= 35 anbaln) +e(n) ©®

Here the a.. are the difference equation coefficients.

po(m)=1 Q)

and the remaining p,,;(n) are chosen from the x and
y terms on the right side of (5) and cross-products
thereof(including powers):

pm(m)= Hn—ky) -~ An—k)x(n—1)

- xl(n—1; ®
m=21, =0, 1<k<K, A<k<K
70, 0<i<L, 0<L<L

An orthogonal search method was developed for
efficiently obtaining the different equation models of
nonlinear systems with unknown structure. Using
this method, we can build up an economical series
representation

¥(m)= ﬁ.ogmwm(‘n) +e(n) ®

where the wa(n) are orthogonal over the data record,
and the g, are the orthogonal expansion coefficients
(achieving a least-squares fit). However, the creation
of the orthogonal functions wa(n) in (9) is expansive
in computing time and memory, and is avoided if
model terms are selected by the fast orthogonal
search. This method uses a Cholesky decomposition
as follows. The orthogonal expansion coefficients in
(9) are given by

—_C(m)
Em= D(m, m) (10)
where
D0,0)=1 1n
Dim,0)= pu(n), m=1, - M (12)

D(m, r)fm |
_ :Z_;an'D(m, z'),a,,-=_%(_:’:._:,} (13)
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m:_-l' ,M ; 7’=1, e om

C0)="n) (14)

C(m)= A n)pm(n)— ’gamc’( 7)) Uy
g m, T! (15)

="D(r,n
m_—_—l' e ’M

If the gm and an- were known, the coefficients am
in (6) could be obtained by the following formula.

an= 3 g0 16)

Suppose that the model terms pm(n) had already
been selected. Then, the @n could be calculated
from (15). The gn follow from (10). Finally, the
required coefficients an in (16) could be obtained
from (16). It can be shown that the mean square
error of the model fit is equivalently

m.s.e= y(n)— gogz,,,D(m, m) an

Suppose that aypu(n) was the last term added to
the model of (6). Then the addition of this term
reduced the mean-square error by the amount

QM = %DM, M) (18)

Equation (17) makes it possible to rapidly assess
the benefit from adding any given candidate term to
the model, without requiring the creation of the
orthogonal functions ww(n). Then the candidate with
the largest Q value is selected (optionally, subject
to exceeding a specified positive threshold level).

We concentrated on obtaining parsimonious sinu-
soidal series representations of time-series data. In
what follows, (6) represents a sinusoidal series re-
presentation which systemically constructed for the
time-series data y(n), n=0,..,N. Equation (7) still
holds and for i=1,2,---

poi—1(n) = cos wm, py{n) = sinwm 19)
The w; are determined successively by searching
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through a set of candidate frequencies wy,wp, - -
which need not be commensurate. It can be shown
that adding the i-th term pair

Ti= agi-1 09i-1(n) + azip(n) (20

In (20), az—-1 and ay are respectively the cosine and
sine amplitude.
Thus, begin by introducing a constant into the

sinusoidal series and obtaining the coefficients,
ay,axas, -+, we can calculate the magnitude of the
frequency at each frequency range.

RESULTS

To calculate a correlation matrix used in the
MUSIC method, we tested three correlation estimate

"mmmma_u B o THUSIC siwomhm CWRATASWLAWSPEC ESTwORTwI a1 I
SﬁodllEnM Spectral Estmete
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Fig. 2. Spectrum for patient 1 calculated by 3 correlation methods
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Fig. 3. Sound spectrum by MUSIC method
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methods of autocorrelation, covariance, and modi-
fied covariance for patient 1. Fig. 2 shows the re-
sults of the spectrum for patient 1 from these three
methods.

As we can see in Fig. 2, it does not have any
significant effect on finding the second dominant
frequency peak, even though the differences in curve
patterns of the spectrum between each method exist.
Thus we selected the autocorrelation method to
calculate the correlation matrix in this study. Fig. 3
shows the results of the spectrum by the MUSIC
method. Fig. 4 shows the results of the spectrum by

the FOS method. Each frequency spectrum contains
two or more frequency peaks.

Table 2 shows the first dominant frequency peak
of all patients calculated by each spectral estimation
method. Patients 1 to 5 were normal prosthetic heart
implantation patients, and patient 6 had a defective
heart valve. Both methods indicated similar first
dominant frequency peaks for all the normal pa-
tients. The defective valve patient showed a higher
peak than the normal patients. )

Table 3 shows the second dominant frequency
peak of all patients calculated by each spectral esti-

200 800 1000 200

400 600
Frequency (Hz)

400
Frequency (Hz)

]

400 800 800 1000
Frequency (Hz)

800 1000 200

patient 1 peak—250Hz»

patient 2 peak-200Hz

L1F05 matbed 7 CWMATLABWLHIWEPEC_ES TWDATWISH 30u1._ I
[EIFOE methed - CWHATLABWLIOWSPEC ESTWOATWITRCA v EER ] ) Spectral Estimate

patient 3 peak-200Hz

Spectral Estimate Spectral Estimate 048
009 0.18|
008 o1 014
007 008 $or
0.06 § 0.1
005 govos 2 o0
2004 ° §
3 0.06
; 003 § 004
002 004
! 002 002
001 '
o ) | 0
200 400 600 1000 200 400 600 800 1000 200 400 600 800 1000
Fraquency {Hz) Frequency (Hz) Frequency (H2)

patient 4 peak-200Hz

patient 5 peak-150Hz

patient 6 peak-350Hz

Fig. 4. Sound spectrum by FOS method

Table 2. First dominant frequency peak by each
method (unit: Hz)

Table 3. Second dominant frequency peak by each
method (unit: Hz)

Patient No. MUSIC FOS Patient No. MUSIC FOS
patient 1 2812 250 patient 1 234.4 X
patient 2 2188 200 patient 2 281.2 100
patient 3 234.4 200 patient 3 156.2 400
patient 4 234.4 200 patient 4 140.6 250
patient 5 140.6 150 patient 5 2188 - 250
patient 6 355.5 350 patient 6 902.3 900
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mation method. As seen in Table 3, the normal sub-
jects all showed similar second dominant frequency
peaks with each other. The abnormal patient showed
a higher peak than the normal patients. Both the first
and second dominant frequency peaks for normal
patients were seen below 300 Hz and for the abnor-
mal patient it was above 300 Hz. Especially for the
abnormal patient, the second dominant peak was
much higher than for normal patients.

DISCUSSION

This stydy shqwed that both methods of spectral
analysis of valvular sound could facilitate the diag-
nosis of prosthetic valve malfunction. For mecha-
nical valves, a localized thrombosis causes progres-
sive restriction of the disc motion, which may im-
mobilize the disc in a semiclosed position. It affects
the closing sound of the valve which results in an
increase of the vibration frequency of the valve
(Durand et al. 1986; Durand et al. 1990; Sava and
McDonnell, 1996). Both estimated frequency spectra
suggested that the signal processing algorithms in
this study may be useful in determining the degree
of valve failure. For the normal subjects, the first
dominant frequency peaks occurred below 300 Hz.
Apparent increases in the first and second dominant
frequency peaks were noted for the abnormal pa-
tient. Moreover, the second dominant frequency
peak revealed a significant difference in magnitude
between normal and abnormal subjects, which proved
to be an important parameter for diagnosing valvular
malfunction. For patient 5, the first dominant fre-
quency peak occurred near 150 Hz. It is thought that
the extremely large valve size of this patient made
the difference in the frequency spectra compared to
the others. But it still showed a lower peak com-
pared to the abnormal valve. Especially using the
FOS method, it only displayed the dominant peaks
because in this method, when adding terms, only a
value over the threshold level was taken without
obtaining the parameters below those values. Thus,
the FOS method has an advantage when only one

308

or two of the dominant frequency peaks are impor-
tant.

In this study two spectral estimation methods,
MUSIC and FOS, were used to estimate the fre-
quency spectrum of the prosthetic valve sound. These
positive results would lead to further equivalent or
related in vivo studies and to provide a preliminary
databank. It is suspected that this method can detect
somewhat different kinds of valve failure, like valve
leaflet calcification or minor problems besides throm-
bosis formation. A large patient population will be
needed to prove the effectiveness of this system.
This system will be more useful when the whole
system is operated through a notebook computer,
which would make it possible to dlagnosé patients
in the outpatient room.
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