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Abstract— This paper addresses the use of a
fast orthogonalization process to find the nodes of
an RBF network which produce the best match
to a target function. Several applications of RBF
networks using this fast orthogonal search tech-
nigue have been investigated and a classification
problem is presented. The problem involves clas-
sification of human chromosomes, which is a highly
complicated 30 dimensional and 24 class problem.
Experimental results show that the fast orthogonal
search technique not only outperforms the tradi-
tional technique, but it also uses much less time
and effort.

I. INTRODUCTION

The growth of neural networks has been heavily influenced
by the Radial Basis Function (RBF) neural networks. The
application of the RBF network can be found in pattern
recognition [1}, function approximation, signal processing
and more [2]. The two most important parameters of a
RBF node, the center and the covariance matrix, have
been researched throughly [1]. One issue addresses by
these researchers is the reduction of the number of nodes.
This reduction involves clustering of the input samples
without any consideration of the target function, or the
convergence of the weights. The weights (the most signif-
icant component of any neural network) of the RBF net-
work were left untouched by most of the researchers. The
authors have developed a fast orthogonal search technique
which will find a set of most significant nodes and their
weights for a given network, using a technique which con-
siders both the structure of the input parameter space and
the target function to which the network will be trained
{2]. This paper reviews the fast orthogonal search algo-
rithm, and illustrates an application of the technique to
the problem of classifying human chromosomes.

II. RapiarL Basis FuncTioN NEURAL NETWORK
A. RBF structure

The RBF Neural Network gained its popularity for its
simplicity and speed. RBF is a simple feed forward neural
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network with only one hidden layer, and an output layer.
The hidden layer consists of a set of neurons or nodes with
radial basis functions as the activation function of the neu-
ron. A Gaussian density function is the most widely used
activation function and assumed throughout this paper.
The output layer is a summing unit, which adds up all of
the weighted output of the hidden layer.
The output of the RBF network is given by

N
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Above, N is the number of network nodes, p is the di-
mensionality of the input space %, and wyg, ¢, and I
represent the weight, center, and the covariance matrix
associated -with each node.

In supervised learning, if (Z,y) is a input output pair,
where & is the input and y is the desired output, then
the network should learn the mapping function f, where
y = f(Z). The network output can be written using the
following matrix form,
= &, (3)
where f/‘ is an M dimensional vector (M is the number
of samples), % is the N dimensional weight vector. Each
column of the & matrix contains the output of a node for
all M samples.

The problem of finding the network weights reduces to
finding the vector 0 which makes the network output ﬁ‘as
close as possible to the vector of desired network outputs
7. Generally, W is determined by finding the least square
(LS) solution to

w2y

&G =7 (4)

The method for finding the solution to (4) depends in
large part on the structure of the network being designed.
If number of nodes is equal to number of training samples
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(i.e. N = M) then the weights are given by W = ®~1§

provided that ® is nonsingular. Often, the number of
nodes is much less than the number of training samples.
In this case the system of equations (4) is overdetermined,
and no exact solution exists. Various alternative methods
of finding the weights in this case are discussed in the
following section.

B. Solving for the Weights

Finding the weights for the network comes down to find-
ing least squares solution to equation 4. Cholesky decom-
position (CD), singular value decomposition (SVD) and
orthogonal decomposition are most widely used methods
to find the LS solution [6]. These procedures are compu-
tationally expensive and have a variety of problems [2]. A
more useful approach is to use the orthogonal basis vectors
to choose a set of nodes which reduces some error criteria
for solving the least squares problem. Chen [3] presents
one such algorithm, derived from the Gram-Schimidt pro-
cedure, to select the most ‘significant’ nodes one by one.
In [4] a similar algorithm was also presented to select basis
function one by one, with emphasis on the characteriza-
tion of nonlinear systems with random inputs.

The importance of choosing the nodes one by one is sig-
nificant in several aspects. Selection of nodes one by one
provides an insight to the approximation problem, and
the network structure. This insight can be used to fur-
ther modify the network. This selection procedure will
also let us meet some physical limitations. A reduction of
nodes will provide a corresponding reduction of connec-
tions which can be very useful for hardware applications.
The desired number of nodes can be easily chosen just by
looking at the error behavior.

The orthogonal search method of Chen [3] is very use-
ful, but not so practical. The computational complexity
of the procedure is not generally practical for networks
of reasonable size. However, the above algorithm may be
shown to be extremely redundant. In the next section an
efficient algorithm will be presented to perform orthog-
onalization procedure without explicitly calculating the
orthogonal set.

III. THE FAST ORTHOGONAL SEARCH

In this section a simple fast algorithm will be presented
to find a set of weights (by solving (4)) that are best for
the given network. The procedure may be shown to be a
computationally efficient procedure for implementing the
orthogonal search technique of [3, 4]. Like the orthogonal
search technique, during each iteration of the algorithm a
set of candidate nodes will be considered to identify which
node will provide the best improvement to the approxima-
tion of 4. This node will be added to the network, and the
procedure continues until either an error criterion is met

or the number of nodes in the network reaches a desired
value. For the mathmatical development of the algorithm
pleases see [5].

The following algorithm presents the appropriate steps
to implement the technique.

1. Store all the node outputs in the set {(;]} and
initialize the following variables:

o = #F,
z; = [0x1 vector],
U = [0x0 matriz], (5)

here, s =1,2,---, N. Also set

Error = ' 4,

Number_node_selected = 0.

2. The iteration begins here.
Find the maximum value of a?/¢? for all i. Let’s
say the maximum is at i = k.

3. Set U, an upper triangular matrix as,
~ U z,
U= . 6
2] ()

4. Update &;, which forms part of orthogonal basis for
the i** node, by finding §; first,

ﬁi=§i($f$i—5{5i) (7)
3

giving,
=, z;
* [ Bi ] (8)

5. Update §;, which is the diagonal term of U,

& =¢ -0 (9)

6. Finally update @, which determines the next best
node, by,

Gy = oy 2P (10)

&

In the above, from step 4 to step 6 updating is only
required when 7 # k.

7. Keep repeating from step 4 through step 6 until all
the nodes in the set {¢;} have been updated.

8. Delete the k** node from the set {¢;}.
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9. Increment the Number_node_selected by one, and
set Error = Error — ol /&2, If Error is less than
some error threshold, or the Number_node_selected
is equal to the desired number of nodes then go to
step 10, otherwise go through the steps 2 - 8 again.

10. At this stage we have a U matrix giving the
Cholesky decomposition of 7@
3Te =UTU. (11)

® 1s formed only from thAe set of nodes that reduce
the sum squared error of . We can use the equation
above in the normal equation, and then solve for
the weights of the selected nodes by the method of
forward substitution, and backward substitution [2].

The algorithm presented in this section not only imple-
ments the technique to find the weights of a given net-
work, but also allows the user to select the number of
nodes. This selection has physical significance since there
may exist hardware or software limitations on implement-
ing nodes. If the number of nodes is not an issue than one
may be able to find a better network by choosing a sum
square error threshold. Also we can look at how the error
is behaving as the nodes have been added to the network.
This provides an indication of whether addition of a node
really makes a difference or not.

IV. A PATTERN RECOGNITION APPLICATION

A complicated and challenging application of RBF will
be discussed in this section. “Karyotyping”, the classi-
fication of the chromosome in a metaphase into the 24
normal classes has been a very important issue in the med-
ical field for many many years. Classification of chromo-
somes involves finding a good set of features to describe a
chromosome, and a classification technique to identify the
chromosomes using the features.

A. RBF Network for Chromosome Classification

The problem of karyotyping involves classifying the chro-
mosome of 30 features (for the data base used here —
Copenhagen [7, 8]) into 24 different classes. The chro-
mosomes in a cell consists of 22 pairs of autosomes, one of
each pair inherited of each parent, and two sex chromo-
somes (an X and Y for male, and two X’s for female).

Figure 1 illustrates the RBF network for chromosome
classification. For the standard RBF networks, all of the
N nodes of the hidden layer would be connected to all
of the 24 nodes of the output layer. The fast orthogonal
search will be able to reduce the insignificant connections
and nodes. The reduction of the nodes can be of very
large scale for a multiclass problem like the chromosome
classification.

Only p nodes are
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layer to the output layer
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Figure 1: Network structure for the RBF Network for
Chromosome Classification.

B. Results and Analysis

Each pattern of this database is an autosome, the X sex
chromosome, or the Y sex chromosome. Each pattern
consists of a set of 30 different features, which are the
measurements of the normalized area, size, density, nor-
malized convex hull perimeter, normalized length, area,
centromeric index, mass centromeric index, length cen-
tromeric index, the weighted density distribution density,
and others [7].

The RBF neural network was trained with 1000 train-
ing patterns. The initial nodes of the network were placed
on first 500 of these 1000 patterns. The covariance of each
node was chosen to be diagonal as in [2]. The fast orthog-
onal search was used to only find the best 40 nodes per
class and their weights. The search technique successfully
found the desired nodes. Figure 2 shows the training error
for class 1 as each node was added in. Notice here that
only 40 out of 500 RBF nodes are connected to each out-
put node. By looking at figure 2, we see that the training
error for class 1 has leveled off by the introduction of the
40" node, implying that introducing another node may
not improve the performance at all. Similar conclusion
can be made for training other classes.

After training the network, the network was tested by
a test set of 3000 patterns different from the training set.
The percent error for this test set was 3.84%, which was
lower than the ones presented by [7, 8].

The number of initial nodes from which to select a set
of nodes of the network can influence the performance.
Figure 3 illustrates the results of some simple tests where
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Figure 2: The sum squared error for training class 1 of
the Chromosome problem.

the number of initial node assignment was changed for the
training procedure described above. The plots in figure 3
gives the percent error (y-axis) for a network constructed
by selecting a set of nodes per class from a larger set of
initial nodes (x-axis). The test was performed to select
10, 20, 30, 40, 50 and 60 nodes per class from the initial
sets. The percentage error was generally lower than the
error given by [8].

V. CONCLUSION

This paper presented a method which provides a simple
way to find the most significant nodes of the network and
their weights. The technique of fast orthogonal search
is implementable using a simple 10 step algorithm. Tra-
ditional approaches require significantly more computa-
tions. The provided solution is the best to match the tar-
get function in a least squares sense. The approach givesa
clear indication of the number of nodes to be used. Appli-
cation of the technique to the problem of chromosome clas-
sification demonstrates that the orthogonal search tech-
nique may give better performance than that of the other
approaches.
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