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Orthogonal
Approaches to
Time-Series Analysis
and System
|dentification

Some recent, efficient, orthogonal approaches to system identification and
time-series analysis are described and illustrated in this paper. A common
thread of most of these approaches is a rapid search for significant terms to
include in the model for the system or time series. In the case of system
identification, the model generally takes the form of a nonlinear or linear (e.g..
ARMA) difference equation where the significant terms, as well as coefficients,
are to be estimated. The system may also be represented by a functional
expansion (e.g., Volterra series), where the kernels are to be estimated, or by a
parallel-cascade arrangement, where the component dynamic linear and static
nonlinear elements are to be estimated.

In the case of time-series analysis, several model structures may also be
adopted. One model structure is a parsimonious sinusoidal series (non-Fourier)
where the significant frequencies, amplitudes, and phases are to be estimated
in order to approximate concisely the time-series data. Other model structures
of interest are autoregressive (AR). moving average (MA), and autoregressive /
moving average (ARMA). There is considerable overlap between system
identification and time-series analysis: a notable difference is that in
time-series analysis, generally there is no access to the model “input”.
Howeuver, we have subsumed under “system identification” the ARMA modeling
of time-series y[n] even when it includes an input time-series x[n] which is not
measurable.

The emphasis of the present paper is on introducing the reader to some useful
modeling approaches with sufficient detail and references provided for ready
implementation. Also. a tutorial style has been adopted throughout.
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for systematically constructing models of linear or
nonlinear systems, and of time-series data. The
need for discrete-time system modeling and modeling
of time-series data (discrete-time sample points of a
signal or other empirical data) arises in many situa-
tions. For example, in order to design a discrete-time
control system an accurate discrete-time model of the
system to be controlled is required. Moreover, an ac-
curate discrete-time model of a physical system may
yield insight into features of the physical system. In
addition, an accurate model may be used to predict new
data points before they occur. Since these algorithms
are very general, applications are very broad in the
areas of linear / nonlinear systems identification and
signal modeling. Specific applications {for illustration)
of these methods include modeling of speech and
biological signals such as electrocardiogram (ECQ),
electromyogram (EMG), and electroencephalogram
(EEG); model-based spectral analysis; equalization of
channels; cancellation of intersymbol interference; etc.
For system identification, the models in this paper are
generally of the following form [1],[2]:

This paper is concerned with some recent methods

yhﬂ=E{ym4LmthM5hwm§hvu}+gw (1)

where x[n|, yln] are respectively the system multi-
dimensional input and output, F is the multidimen-
sional system function, and eln is the
multidimensional model error. When F is nonlinear, (1)
can be a nonlinear difference equation. Equation (1)
includes autoregressive (AR), moving average (MA), and
autoregressive / moving average (ARMA) model repre-
sentations (Flinear): examples of linear systems. Equa-
tion (1) also includes the finite-memory, finite-order
discrete-time Volterra series (F a polynomial function of
xnl,....xdn-1] only): an example of a nonlinear system.
It is assumed throughout this paper that the system is
a continuous functional or mapping of the input (in that
small changes in the system input result in small
changes in the system output, i.e., discontinuities are
excluded), time-invariant, causal, and depends to an
arbitrarily small extent on the remote past of the input.
Systems with hysteresis are excluded. For simplicity,
throughout the remainder of this paper, only single-
input, single-output discrete-time systems will be con-
sidered.

For time-series analysis, the model is generally of the
following form:

M
ylnl = Da_p, [nl +eln] ®)
m=0

Here, the p_[n] terms may be past values of yln] (AR

model), present and past values of x[n] (MA model), a
combination (ARMA model), or a wide variety of other
functions such as triangular waveforms, square waves,
exponentials or exponentially-decaying sinusoids,
logarithmic functions, splines, polynomials, or sine and
cosine functions where the frequencies (not necessarily
commensurate) are to be estimated. However, since
ARMA models are contained within (1), they are con-
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sidered below under “system identification” to stream-
line the presentation, and sinusoidal series will be
presented below under “time-series analysis”.

For both system identification and time-series
analysis, a common problem (and a principal preoc-
cupation of this paper) is the selection of terms to
include in the model, so that a concise representation
is constructed for the system or time-series data. For
example, suppose a difference equation model is to be
constructed for a nonlinear system. Then the multi-
dimensional F (polynomial considered here) may com-
prise a constant, a linear combination of x and y terms
on the right side of (1), and crossproducts (including
powers) of any number of these terms. As several
authors have pointed out, e.g. [3], it is important to
select a concise subset out of all possible candidate
terms in order to build an economical (parsimonious)
but accurate model of the nonlinear or linear system.

Similarly, suppose that given time-series data are to
be accurately approximated by a linear combination of
sine and cosine functions. A Fourier series repre-
sentation could be used, wherein the frequencies of the
sines and cosines are harmonics {integer multiples) of
the fundamental frequency corresponding to the record
length. However, this may result in an unnecessarily
long sinusoidal series because the significant frequen-
cies in the given time-series may be unrelated to the
particular record length available. A much more
economical sinusoidal series representation can be sys-
tematically developed for the time-series by orthogonal-
ly searching [41.[5] for the most significant sinusoidal
frequencies first (see below). Moreover, in the methods
examined below, the frequencies selected for the
sinusoidal series representation are not required to be
commensurate nor integer multiples of a fundamental
frequency. This is an important advantage which can
achieve parsimony of the sinusoidal series repre-
sentation, and much finer frequency resolution (up to
eight times better, as shown below) compared to the
conventional Fourier series approach.

The examination below is divided into sections on
system identification and time-series analysis, but
there is some overlap between the sections. For ex-
ample, the fitting of ARMA models to time-series data
is frequently considered to be system identification with
an inaccessible input, and this is the classification
followed here.

SYSTEM IDENTIFICATION

This section examines some recent methods for sys-
tematically constructing difference equation models of
linear [6) or nonlinear [4],[5],[7],[8] systems of unknown
structure, and for estimating the kernels in a functional
expansion of a nonlinear system [9],[10], particularly by
building parallel-cascade representations of nonlinear
systems [11]-[14]. A common theme in most of the
presentation is the use of orthogonal approaches to
simplify the model development. Wiener [15) pioneered
the use of the Gram-Schmidt procedure to construct a
functional expansion where the terms are orthogonal
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for a given white Gaussian input process. The Wiener
kernels in his orthogonal series can be estimated in the
time domain via the crosscorrelation formula of Lee and
Schetzen [16], or in the frequency domain via the
method of French and Butz [17]. Important extensions
[18] and applications [19]-[21] of the Wiener-Lee-Schet-
zen approach have followed. This work has indeed
motivated several of the methods examined below.

DIFFERENCE EQUATION MODELING

The key issue considered here is the efficient selection
of difference equation terms to build a concise, accurate
model of a nonlinear system. The term-selection tech-
niques utilize well-known classical or modified Gram-
Schmidt orthogonalization and Cholesky
decomposition. The recent algorithmic developments
which are focused upon below concern how Gram-
Schmidt and Cholesky procedures can be used as part
of a method for searching out significant model terms.

An orthogonal search method was developed [7].{8] for
systematically constructing difference equation models
of nonlinear (which includes the linear case) dynamic
systems with unknown structure. A very similar ap-
proach had previously been used by Desrochers [22] to
build static models of nonlinear, zero-memory (i.€..
nondynamic) systems.

Orthogonal Search Method

Suppose that the input x[n] and the output y[n] are
available for some system for n=0,....N. (The experiment
to obtain the data may have begun well before, and
continued long after, the available record segment.) The
desired difference equation model will have the form of
(2), where

pylnl =1 (3)

and for m> 1,

plnl = y[n—kll...y[n—kl.])dn%l],..x[n—lj] (4)
where

i>0, 1SkI£K,.,l<ki£K (5a)

j=20, OSLISL,..,,OSIJSL (5b}

In (5). & O denotes that p,_[n] does not contain any y
terms. Similarly, j= O denotes that p,[n] does not con-
tain any x terms.

Let Ny = max(K, L) be the maximum input or output
lag permitted in the candidate difference equation terms
of (4). where Ny<N. Then, each p,_[nl will have the form
shown in (3) or (4). and the data will be complete (no
argument negative for any x or y term) for n=N,,...,N.
According to the orthogonal search method, the dif-
ference equation represented by (2) may be rewritten as
the following orthogonal series:
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M
ylnl = Y, gwinl + e [n

m=0

In (6), the w,[n] are constructed from the p_[n] (via

the Gram-Schmidt or, preferably, the modified Gram-
Schmidt procedure) to be mutually orthogonal over the
interval n = N,,,...,N. The g, are selected to minimize the

mean-square error (mse) over this interval. namely

_ 1 N M
A 2 NN ZI,VeZ[nl = (yn-Y gw,[n)?
=Ny m=0
M
= 1_/2[T1] - z gr271 w?nhl] (7)
m=0

In (7) and elsewhere, the overbar denotes the time-
average from n= N, to n=N. The fact that the mean-

square error is minimized over this truncated interval
ensures that no error is introduced by the unavailability
of the data prior to n = O (i.e., for negative arguments of
x and y).

Suppose that a,p[n] was the last difference equation
term added to the model in (2). Then it is easily shown
from (7) that the addition of this term reduced the
mean-square error by the following amount [4]-[8]:

Qlrl = gzw%[n] 8
where
ylnw [n]
= — (9)

Equation (8) follows from the fact that the w,[n] were

constructed to be mutually orthogonal. Consider in
more detail how the a,p,In] term can be selected. Thus,

to expand the model by a further difference equation
term, evaluate the quantity Q in (8) for each candidate
addition to the model. Choose the candidate for which
Q is greatest, since the addition of this term will result
in the largest reduction in mean-square error. As noted
above, Desrochers [22] has previously used this ap-
proach (and an analogous equation to (8)) to fit static
nonlinear models. By continuing to select terms in this
manner, one may construct a concise but accurate
difference equation model for a real system, particularly
if a threshold is used to reject unsuitable terms [8].
Note however that the construction of the orthogonal
functions w, [n], especially since this must be done for

all candidate terms, is computationally intensive, and
also can require excessive amounts of computer
memory. The Fast Orthogonal Search, to be described
next, avoids these problems.

Fast Orthogonal Search

Fast Orthogonal Search [4].[5] was developed as a
more efficient method for building difference equation
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models of nonlinear systems, and for modeling time-
series data. Suppose first that all p, [n] terms in (2) were
known a priori. Then, to estimate the a, usea Cholesky
decomposition, which can be carried out using the
following pseudo-code (for similar substitute code, e.g.
the Cholesky outer product version, see Golub and Van
Loan [23]):

D10,0)=1 (10)
FOR m=1TOM
D(m. 0l =p Tn] (11)
FOR r=1TO m
Pm, rl=p [nlpInl (12)
NEXT r
NEXT m
FORm=1TO M
FOR r=0TO m-1
Alm.d=D(m r/DIr.1]
Dim, r+l] = Pm, r+l] - iA [r+1.i D [m.d]
=0
NEXT r
NEXT m
C 0] = yin] (13)
FORm=1TOM
me1
Ciml = yinlp_fnl = 2, Alm.r C 17 (14)
=0
NEXT m
FOR m=0TO M
Glml=Clm /D[m m (15)

NEXT m

(The above pseudocode is merely for illustration and
clarity of presentation; modification to the code can
readily be made to improve efficiency, but that is not
the intent here.)

Finally, the coefficients a,, in the difference equation

represented by (2) can be calculated by the following [9]:
M

vm =1 (17)
i1

ol = -3 Alid vfrd, = mrl....M (18)
=m

However. in practice the particular choices of the
p,,Inl for achieving an economical model are not usually

known in advance. Therefore, a simple term selection
procedure is now discussed, but it will be appreciated
that many variations of this procedure can be readily
set down. First, use (3) to introduce a constant term into
the difference equation model, and note that (in view of
(10) and (15)) Gl[O] is given by (13). Then, with M
successively setequalto 1,2, ..., each p,,in] model term
may be chosen as follows. For each candidate for
pplrl denoted p,(nl. evaluate the quantity [4].15]

QM = G*M| DIMM] (19)
where here, and throughout the remainder of the paper,
an underscore indicates a candidate function or its
coefficient. It can be shown that DIM,M] equals wjinl:

and indeed equation (19) is equivalent to (8) and thus
follows from the mutual orthogonality of the w,[nj.
Equation (19) provides the reduction in mse if one
further term, namely pylnl, were to be added to the
model. Therefore, choose the candidate for which @ in
(19) is the greatest (optionally, subject to exceeding a
specified threshold level), since this choice for py,(n] will
cause the greatest reduction in mse.

To calculate GIM] and DIM.M] in (19) for a given
candidate pyinl], one may shorten the above pseudo-
code (from (10) to the line following (15)) by carrying it
out only for m=M. and not for earlier values of m. This
avoids repeating calculations already performed at ear-
lier rounds of searching. After selecting p,[nl. repeat the
abbreviated pseudocode for the chosen candidate, to
properly set the values of G[M], DIM.M], etc., before
continuing the process. To use the abbreviated pseudo-
code requires knowing the time-averages (which are
always from n=N, to n=N) on the right sides of (1 1), (12),
(13), and (14). The time-average in (13) can be computed
once at the outset and stored. The time-averages in (11),
(14), and (12) when r=m, can also be calculated initially
(letting p,[n] equal in turn each candidate term) and
stored. Then, to be able to use the abbreviated pseudo-
code to calculate GIM] and DIM,M] in (19) for a given
candidate. one need merely determine the time-average
of that candidate with the last-selected term. All other
required time-averages will be available from the pre-
vious rounds of searching.

Moreover, the lagged nature of the difference equation
terms in (4) makes it possible to accelerate the calcula-
tion of the time-averages on the right sides of (11) and
(12). This can be done by relating the time-averages to

A = 2 Gll vl (16) input and output means and correlations, and then
=m making small corrections for the finite record length.

h Such an approach is much more efficient than comput-
where ing each time-average independently, and moreover
31 1EEE SP MAGAZINE JULY 1991



avoids the need to explicitly create and store the p_[nl]
terms. To illustrate, suppose that

pm[n] =yln-oal, ax1 (20)
Then, the time-average of (20) (required on the right

side of (11)) would be

o

y[nl+ﬂ'12(y[N - y IN-i 1)),
=1

p_[nl= 21

where

T —ffzym

As noted, the output average is computed at the
outset. Then the time-average of any p,[n] of the form
of (20) can be calculated from (21) to make the correc-
tions for the finite record length. (These corrections
could also be made recursively [14].[26].)

Similarly. suppose that

p M =yn-ol xnPl. a=1. p=0 (22)
It is assumed that for r= 0
U1 = ﬂ ':1 Z x[nl y in-, (23)
and
NLESS N iy 2 y[n] x[n-1]

0
have been computed at the outset. If B = 0 in (22), then
the time-average on the right side of (11} is given by (23)
with r = . Otherwise,

p = (om[afBH
NN, 1%(xuv ~{YIN,-i+B-ol-xN-i+ 1y [N-i+ 1+p-od)
1<B<a,
and
pinl = 0 [B-ol+
N-N i(y[N - x[N —l+oc—ﬁ] YIN-i+ 11X N-i+1+0—B))

1<as<P
so that the required time-averages can be efficiently

calculated simply by making small changes in ¢, or
¢, The time-averages on the right side of (12) can be
calculated analogously from the input and output cor-
relations. See references [14],[26] for illustration of how

JULY 199

required time-averages can be efficiently calculated
recursively.

It is stressed that there is no need to create or store
the candidate difference equation terms (which may
well number in the thousands). Instead, only the
averages of these terms, and averages of certain pairs
of these terms, are required and can be efficiently
obtained as illustrated above.

For the difference equation model represented by (2),
the mse is (from (7), (8) and (19))

M
2inl = Linl - 2, GClml Dim.ml 24)

m=0

and this may be used in deciding when to stop adding
further terms. Model development may also be halted
when a predetermined number of terms have been
selected, or when no remaining candidate can cause a
reduction in mse exceeding a specified threshold level.
A simple statistical criterion for rejecting unsuitable
candidates is set out below.

Discussion of Search Techniques

It will be clear to the reader that difference equation
development via the orthogonal search method and via
fast orthogonal search are closely related, as typified by
the equivalence of (8) and (19). Fast orthogonal search
is much faster and requires O(MN,P+M>P) multiplica-

tions in total, where P is the number of candidate terms,
M < < P is the number of (nonconstant) terms in the final
model, and N; = N-Ny+1. This number of computations

is needed if each time-average required in fast or-
thogonal search were computed independently. In fact,
the number of computations is reduced since, as il-
lustrated above, important savings in calculating time-
averages are available by exploiting the lagged nature
of the difference equation terms. Both the orthogonal
search method and fast orthogonal search, either ex-
plicitly or implicitly, orthogonalize the candidate terms,
and then use (8) or (19) to test each candidate and
choose the one resulting in the greatest reduction of
mse. Desrochers [22] has previously used this approach
with an equivalent equation to build static models of
nonlinear, zero-memory systems. Some of the scalar
equations in fast orthogonal search are similar to
Desrochers’ matrix equations, but while his work is
extremely valuable, there are significant differences
from fast orthogonal search (see [24]).

First, Desrochers’ method requires O(N,P 2) multi-
plications just to construct an initial matrix, where N,

is the length of his input sequence. Second, Desrochers’
work did not consider modeling by difference equations,
and so could not take advantage of computational
savings inherent in computing time averages involving
difference equation terms as illustrated above. Third,
Desrochers’ approach determines a concise static
model, but does not yield the model coefficients. Des-
rochers and Mohseni [25] propose a related approach
which they apply to modeling dynamic nonlinear sys-
tems via differential equations. Again, the work does not

IEEE SP MAGAZINE 3



exploit the computational savings inherent in a dif-
ference equation approach.

The orthogonal search method [7],[8] for fitting dif-
ference equation models can he applied in many varia-
tions. For example, to increase speed of searching,
Mcllroy [8] arranged candidate difference equation
terms into disjoint subsets (which were searched suc-
cessively): (1) linear x terms, (2) linear y terms, (3) xx
terms, (4) yy terms, and (5) xy terms. Within a given
subset, a candidate term was permanently dropped from
consideration if its reduction of mse was less than a
specified percentage of the output mean-square. The use
of this threshold to permanently discard terms greatly
accelerated searching. Once a subset was exhausted,
the next subset was searched. This procedure was used
to model several real systems. including a data transmis-
sion channel [8]. A similar compartmentalized search
can optionally be implemented when fast orthogonal
search is used; this has been utilized to model dis-
persive nonlinear data transmission channels [26].

Finally, a simple statistical criterion (a standard cor-
relation test) can optionally be used in deciding whether
to reject a candidate term. Suppose model terms up to
and including ayp,n] have been selected, so that e[n]
is the residual in the model of (2). Suppose that, for a
given candidate for Qg Py I the corresponding

value of Q is calculated, withM replaced by M+1 in (19).
It can be shown [27] that if e[n] is zero-mean, inde-
pendent Gaussian noise, then

Ly

o Py D MMl |2
M

;2“[;] B Z Gz[m] D [m.ml N—NO+1
m=0

with probability of about 0.95, for sufficiently long
record length (N-Ng+1). Hence. before choosing a can-

didate for a,, Py, 1. one may optionally require that

M
GP[M+1)D[M+1.M+1] > Y GAimipim.m)

N-N.+1]Y T
o m=0
(25)

For smaller record lengths, replace the factor
4/(N-Ny+1) in (25) by the square of the critical correla-
tion coefficient value for sample size (N-Ny+1). [Clearly,
a factor corresponding to other than 95% confidence
limits may be substituted for the factor in (25).] If there
are no candidate terms remaining which satisfy (25),
then model development may be halted. In addition, a
“single-pass” search can be implemented whereby each
candidate satisfying (25) is added to the model, while a
candidate which fails this screening is permanently
rejected.

Fitting of ARMA Models

To facilitate understanding of the following discus-
sion, it is useful to describe very briefly the classical
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Gram-Schmidt and the modified Gram-Schmidt proce-
dures. Suppose again that p_[nl, m=0,1,....M, are

defined over the time-interval n = N,,....N. Then a set of
data files w,[n], m= 0,1,....M, which are mutually or-

thogonal over this time-interval can be created via
(classical) Gram-Schmidt orthogonalization as follows.
Set

wyrl = plnd

and, for m=1.2,....M,

m-1
w, nl=p,lnl - o win
=0

where
p, [l w]ln]
o =
mr wz [n]

Alternatively, to create a set of data files p(,{{')[n] which
are mutually orthogonal over the interval n= Ng,...,N,
the more robust modified Gram-Schmidt procedure [28]
can be used. Define
Pl =p [, m=0.1,...M

and, forj=0,1,..M-1; m=j+1,...M

i) = p 0
piinl = plin) - o p'in]

where
_ pniplnl
" @y

Since the orthogonal functions pi™[n] take the place
of the functions w,[n] in the classical Gram-Schmidt

procedure, it is understood that the former functions
may be substituted for the latter, in (8) and (9) for
example. Indeed,

ylnl P
9.~ %, m=4Q,....M
(P, I
The input / output data are to be fit by a linear
difference equation, an ARMA model of the following
form:

K L
yl=-3 c yln-id+ Y b xn-il +elnl (26)
k=1 =0

In (26), K and L again represent the maximum output
and input lags permitted for the difference equation
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terms. However, the identified model may well have a
lower order, say (K;,L,), where K, <Kand L, <L, with
¢.=0, IcK,, and b;= 0, L.

Since the ARMA model in (26) does not contain a
constant term, it is not necessary to define p,ln] using
(3). Instead, py[n] can be the first of the terms x{n-i],
i2 0, and yln-k|, k 2 1, chosen for the model. (Alternate-
ly, one could of course use (3) to introduce a constant
into the model, in which case p,[n} would represent the
first chosen x or y term.) In the ARMA identifier
described by Korenberg and Paarmann [6], a candidate
x term is paired with a candidate y term; one member
of the pair is chosen for the model. The remaining term
is paired with a new candidate term whose lag is one
greater than the chosen term. The selection process
continues until the mse of the model is less than a
specified threshold value.

More specifically, the first candidate pair is x[n] and
yln-1]. If x[n] is selected for the model, then the next
candidate pair is x{n-1] and y[n-1], otherwise the new
pair is x[n] and yl[n-2]. Consider choosing the M-th
model term, p,nj, M2 0 . For each of the two candidate
terms, use the classical (or, preferably, the modified)
Gram-Schmidt procedure to create the corresponding
wydnl (or p{Pn]) orthogonal to the model terms already

selected. Hence, determine from (8) and (9) the mse
reduction Q[M], if the candidate term were the sole
addition to the model. Choose the member of the pair
with the larger Q value. Stop the process when a preset
number of model terms have been selected, or when the
mse is less than a specified percentage of the output
variance (or, the output mean-square). Term selection
may also be halted when neither member of the can-
didate pair can cause a mse reduction greater than a
threshold level. Then, (16)-(18) can be used to calculate
the difference equation coefficients a,, in (2) and thus

¢ and b, in (26). It will be appreciated that the above

identifier can also be used without the searching feature
to fit data by ARMA, AR, or MA models of specified order.

Consider the case when the system output y[n] is
corrupted by additive zero-mean, stationary, white or
colored noise, independent of the system input, and
only the noisy output 2z{n] ( z[n] = yin] + vinl, where
v[n] is the additive noise) and x{n] are measurable. (For
a linear system, corruption of the input by such noise
is equivalent to contamination of the output by additive
zero-mean colored stationary noise independent of the
input.) Much of the noise corrupting the output can be
removed as follows [6],[12]. Using the noisy output in
place of (unmeasurable) y[nl, estimate a high-order MA
model of the form:

L

z[nl =Y b xIn-1 +eln]
=0
Use the identified MA coefficients 31. to calculate the

estimated noise-free output:

L
glnl=Y B xn-q

=0

iy 9m

For sufficiently long record length, ﬁ[n] will be sig-
nificantly closer [6] to the noise-free output y[n] than is
the noisy output z[n]. Finally, use ﬁ[n] as a substitute
for yin] in the above-described ARMA identifier.

A similar modification can be used to fit ARMA models
to time-series data y[n], when the input x[n] is inacces-
sible [6]. This modification follows the approach of
Konvalinka and Matausek [29] except that the ARMA
identifier proper is different, slightly better results are
obtained here [6], and the present method includes
automatic order estimation. First, fit the time-series
data by a high-order AR model of form:

K

yl=-Y ¢ yln-K+eln]
k=1

(27)

Next, use the identified AR coefficients ’c\k to obtain an
estimate of the input:

K

Xinl=ynl+Y ¢ yln-K
k=1

(28)

The 9dn], y[n] data are then utilized in the ARMA
identifier with automatic order estimation described
above. To iterate the process, use the identified MA
coefficients to inverse-filter y[n] [29]. The resulting sig-
nal y,[n] is then used in place of yln] to fit the high-order

AR model of the form in (27). The idea is to remove the
MA part for a better high-order AR fit. Next, the newly
identified AR coefficients Qk are employed to provide an

improved estimate of the input (analogous to (28) with
y replaced by y,}). Then y{n] and the improved estimate

of x[n] are used in the above-described ARMA identifier,
etc.

Example 1

In Example 1 an ARMA system was excited by zero-
mean, white, Gaussian noise (x[n]), and the resultant
system output, yin], was corrupted by additive noise
yielding z[n]. The additive noise was zero-mean, white,
Gaussian noise uncorrelated with the system input. The
data lengths for the input and output data were 2000
points each. The AR parameters are -2.41, 2.96, -2.02
and 0.73, and the MA parameters are 1.0, -0.17, 0.29,
-0.23 and 0.58.

In the first part of this example both x[n] and y[n]
(noise-free data) were made available to the ARMA
identification algorithm. The true system parameters
were identified essentially without error (identical to ten
significant places). Note that the identification algo-
rithm not only accurately identified the system
parameters, but correctly estimated the system order
as well.

In the second part of this example only x{n] and z[n]
were made available to the identification algorithm. The
signal-to-noise ratio (SNR) was 10 dB. The MA method
of noise reduction described above was first used, with
an MA order of 40, yielding a[nl. The resultant SNR of
yln] was 18 dB. This was followed by the ARMA iden-
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Fig. 1. Frequency spectra for Example 1. The SNR was 10 dB.
Solid line, true; short-dashed line, ARMA estimate that in-
cludes MA noise reduction; long-dashed line, ARMA estimate
without MA noise reduction.

tification algorithm; the algorithm input data being xIn]
and Q[n]. For comparison, the identification was also
conducted without first using the MA method of noise
reduction. Also, for comparison, both ARMA identifica-
tions used a fixed order of 6,6 (maximum lag for both
input and output was 6). For good performance in
additive noise, the identification order should exceed
the true order: see reference [6] for a discussion.
Figure 1 illustrates the errors in the frequency
domain. The true frequency response is shown by the
solid line, the frequency response based on the es-
timated parameters obtained with MA noise reduc-
tion is shown by the short-dashed line, and the
frequency response based on the estimated
parameters obtained without MA noise reduction is
shown by the long-dashed line. Note that the short-
dashed response matches the true response much
better than does the long-dashed response. If plotted,
the estimated frequency response for the noise-free case

Amplitude

0O 5 10 15 20 25 30 35 40 45 50

Samples

Fig. 2. Unit sample responses for Example 1. The SNR was 10
dB. Solid line, true; short-dashed line, ARMA estimate that in-
cludes MA noise reduction; long-dashed line, ARMA estimate
without MA noise reduction.
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would be superimposed on, and indistinguishable from,
the true response.

Figure 2 illustrates the errors in the time domain; a
comparison of unit sample responses. The true
response is shown by the solid line, the response based
on the estimated parameters obtained with MA noise
reduction is shown by the short-dashed line, and the
response based on the estimated parameters obtained
without MA noise reduction is shown by the long-
dashed line. Note that the short-dashed response
matches the true response much better than does the
long-dashed response. If plotted, the estimated unit
sample response for the noise-free case would be su-
perimposed on, and indistinguishable from, the true
response.

Example 2

In Example 2 an ARMA system was excited by zero-
mean, white, Gaussian noise with the following poles:

0.95¢502, 0.98¢512, 0.90¢520
and with the following zeros:

1.0e50-70, 1.0e%2-5

Magnitude in dB

0. 5 1. 1.5 2. 25 3.
Normalized Frequency (rad/sec)

Fig. 8. Frequency spectra for Example 2. The input was not ac-
cessible. Solid line, true; dashed line, based on the ARMA es-
timate.

Note that the zeros are on the unit circle. The mag-
nitude frequency spectrum is shown in Fig. 3 as the
solid line. Two thousand points of this signal (the output
of the ARMA filter) was the only data supplied to the
ARMA identification algorithm (the input was not acces-
sible). The algorithm for the case where the input is not
accessible was briefly presented above. Details may be
found in [6]. The algorithm, not given the ARMA order
a priori, estimated six poles (six actual) and four zeros
(four actual). The accuracy of the estimated parameters
is illustrated in the frequency domain in Fig. 3. The
estimated frequency spectrum of the signal is shown as
the dashed line, and shows little error relative to the
true spectrum.
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For an indication of the superior accuracy of the
present algorithm applied to ARMA signals (input not
accessible), see [6] for a comparison with the method of
Konvalinka and Matausek [29]; see [30] for a com-
parison with six other methods.

IDENTIFICATION VIA FUNCTIONAL
EXPANSIONS

There are various ways of mathematically repre-
senting nonlinear systems. A popular representation
has been by means of Volterra series. This section
considers approximating a nonlinear system both by a
discrete-time Volterra series, and by parallel cascades
of dynamic linear and static nonlinear elements.

Volterra Series
As noted in the introduction, the right side of the model

in (1) contains the finite-order, finite-memory, discrete-
time Volterra series:

L R R
ydn =%, > bl T nmiy 1ox [neiy ] (29)

E0i=0 i=0
1 U

In (29), L is the order (or degree) of the Volterra series,
(R+1) is the memory length, and k; is the (symmetric)
I-th order Volterra kernel. The zero-order kernel k; is a

constant. For the continuous-time case, it is known [31]
that any time-invariant, finite-memory system which is
a continuous functional of its input can be uniformly
approximated over a uniformly bounded, equicon-
tinuous set of input signals by a Volterra series of
sufficient, but finite, order. Consider next a discrete-
time system which also has the property that “small”
changes in the system input result in “small” changes
in the system output, and which furthermore is time-
invariant, causal, and possesses finite memory. It fol-
lows from the Stone-Weierstrass theorem [32],[33] that
such a system can be uniformly approximated over a
uniformly bounded set of input signals by a series of the
form in (29), for sufficiently large L. The kernels k;

characterize the system in that they enable prediction
of the system output corresponding to any member from
the set of input signals.

Since finite-order Volterra series are included in the
model of (1), kernel estimation [9],[10],[14],[34] can be
carried out using the difference equation modeling
described above. For example, the pseudocode from (10)
to the line following (15) can be used in conjunction with
efficient procedures [10],[14],[34] for calculating the
time-averages on the right side of (11) and (12) from the
input mean and autocorrelations. (Note that in this
application i= 0 in (4), so that the p,_[n] defined by (3)
and (4) contain no y terms.) Then (16)-(18) yield the
a,, which are directly related to the desired kernels. For

further details, see [9],[10].[14],[34].
However, a very effective method for estimating the
kernels of a nonlinear system with lengthy memory
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relies on a different approach, parallel cascade iden-
tification, which is briefly reviewed next.

Parallel Cascade Identification

Consider again a causal, finite-memory, time-in-
variant, discrete-time system which is a continuous
mapping of its input in that “small” changes in the
system input result in “small” changes in the system
output. Palm [33] has shown that any such system can
be uniformly approximated by a finite sum of cascades,
each comprising a dynamic linear, a static nonlinear,
and a dynamic linear system. Korenberg [1 1]-[14] has
proposed a method for identifying parallel cascade rep-
resentations of this form. The representation is related
to an approach of Wiener [15] and Bose [35] for expand-
ing Wiener kernels using a complete set of basis func-
tions (e.g., the Laguerre functions). However, a fixed set
of basis functions may not result in rapid convergence
to accurately represent a wide variety of nonlinear
systems. In the parallel cascade method [11]-[14], the
first component in each path, a dynamic linear system,
is defined using a slice of a crosscorrelation function,
so that, in effect, the basis functions change with the
system to be identified.

For the parallel cascade method to apply to any non-
linear, causal, finite-memory, discrete-time, time-in-
variant system which is a continuous mapping of the
input, it suffices if each of the parallel paths comprises
a dynamic linear system followed by a static non-
linearity [11]. The model may be represented as follows:

1
yln=Y z[nl + e [n]

=1

where z[n] is the output of the i-th linear/nonlinear

cascade path, I is the number of parallel cascade paths,
and e[n] is the final residue error. For simplicity, iden-
tification via such simple parallel cascades will be
described here, although one can continue to add
dynamic linear systems and static nonlinearities in
developing each path [11]-[14].

The essence of parallel cascade identification is to
approximate the nonlinear system output using a first
cascade, compute the residue between system and
cascade outputs, then approximate the residue using a
second cascade, ete. For a very broad class of systems
the sum of the cascades can provide an arbitrarily close
approximation, in the mean-square sense, to the sys-
tem to be modeled. (For proof of convergence of the
algorithm, see reference [14].) The discrete impulse
response of the first component in each path is defined
via a slice of a crosscorrelation (first or higher order) of
the input with the residue remaining after estimating
the previous cascade. Suppose that y[n], n=0,....Nis

i
the residue remaining (yln] - ZZJ.[n]) after estimating
J=1

the i-th cascade (where ygln] = y[n]). Consider ap-

proximating the residue y, ,[n] by an i-th cascade,
i>1.
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Let hjfn] be the {discrete) impulse response of the

dynamic linear system in the i-th cascade path, and
z{n} be the cascade output. Then,

y, [nl =y, ,Inl - z{nl (30)
Let him] be randomly set equal to one of

(nyH[m] = yi_l[n] x [n-m] (31)
and

Py, [MAl £ E Sim-Al (32)

=1

where m=0,...,R, and the overbar denotes the time-

average over the interval from n = R to n= N. The slice

of the second-order crosscorrelation Py in (32) is
1

likewise computed by time-averaging over this interval.
Moreover, in (32) the discrete delta function 8[n) =0,

Amplitude
2RoRBRBB DR

0 5 10 15 20 25 30 35 40 45 50 56 60 65
Samples

Fig. 4. First-order kernel, true and cross-correlation estimate
for Example 3. Solid line, true; dashed line, cross-correlation
estimate.

n# 0, and 3[0) = 1, the sign of the delta term is chosen
at random, the constant A is randomly selected from
0....,R, and the parameter E is made to tend to zero as
the mean-square of the residue approaches zero. For
example, set

:

E- Y,

3

{n]
With h{m] defined, calculate its output

R

u([n] = 2 hi [m] x [n-m]
m=0

Next, a polynomial having input u, is best-fit to the
residue y,, over the interval n=R,...,N. This deter-
mines the static nonlinearity in the cascade, and then
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Fig. 5. True second-order kernel for Example 3.

the cascade output z; can be calculated. The new

residue can be obtained from (30), and the process
continued until the mse is acceptably small, or a given
number of cascades have been added to the model, or
tested. For example, before adding a given candidate for
the (i+1)-th cascade, one may optionally require that

Y/ ——
Z,Inl > Nogi1 Yiinl (33)

which can be obtained analogously to (25), and helps
to prevent choosing unnecessary cascades which are
merely fitting noise. Suppose that this optional test is
used and the candidate cascade does not satisfy (33).
Then randomly reselect hy,[m] using a first-order

crosscorrelation, or a slice of a second- or higher-order
crosscorrelation to which discrete impulses are added
or subtracted at diagonal values (as in (32)).

Notice that the cascade paths are obtained one at a
time. Higher-order nonlinear systems are readily
modelled by parallel cascade identification since they
merely require estimation of higher-degree (and/or
more) polynomials in the cascade paths. Indeed, the
nonlinearities in the parallel cascade representation
always appear as static functions. Hence their estima-
tion is far faster than the higher-order crosscorrelation
required by the Lee-Schetzen [16] method of estimating
Wiener kernels. Note that only a slice of a crosscorrela-
tion is required (in (31) and (32)) to define the first
component of a cascade path, as opposed to complete
crosscorrelation in the Lee-Schetzen approach.

Aside from the capability of rapidly modelling high-
order nonlinear systems, parallel cascade identification

Fig. 6. Cross-correlation second-order kernel estimate for Ex-
ample 3.
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Fig. 7. First-order kernel, true and parallel cascade estimate
for Example 3. Solid line, true; dashed line, parallel cascade
estimate.

enables accurate kernel estimation even for systems
with lengthy memary. This is done by rearranging the
identified parallel cascade into an equivalent functional
expansion whose kernels are then known. Since kernels
may reveal much about information processing (see, for
example, the retinal studies by Sakai, Naka, and col-
leagues [36]-[40]), accurate kernel estimation is impor-
tant.

Example 3

To illustrate kernel estimation via the parallel cascade
method, a second-order nonlinear system (L = 2 in (29))
with memory length 64 was stimulated by 5000 points
of zero-mean, white, Gaussian noise. (For a second-
order Volterra series, the corresponding Volterra and
Wiener kernels of first- and second-order are equal.)
One zero-order, 64 first-order, and 2080 distinct
second-order kernel values were estimated by crosscor-
relation [16] and parallel cascade [11]-[14] methods. As
shown in Figs. 4, 5, and 6, there is considerable error
between the crosscorrelation estimates and the true
kernel values. The parallel cascade kernel estimates
shown in Figs. 7 and 8 are significantly closer. The
mean-square error of the parallel cascade repre-
sentation is about 0.037%. The estimation can be made
even more accurate by adding further cascade paths to
the representation.

One reason for the noise in the crosscorrelation kernel
estimates is that the record length (5000 points) is
relatively short compared with the total number of
distinct kernel values (2145), many of which have sig-
nificant magnitude. Crosscorrelation estimates do ap-
proach the actual kernel values as the record length
increases. However, in other comparative testing,
crosscorrelation estimates did not attain the accuracy
of parallel cascade estimates even when the record used
for the crosscorrelation method was 100 times longer
than that for parallel cascade. Note that, in the present
example, attempting to estimate the kernels of the test
system by direct least-squares estimation would entail
the numerically formidable inversion of a symmetric
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2145 by 2145 matrix (which is not Tueplitz nor near-
Toeplitz so as to enable rapid inversion).

In fact, the parallel cascade method [11]-[14] has been
successfully applied to kernel estimation of systems
with memory length up to 150. Such kernels could not
practically be measured by direct least-squares estima-
tion since, for a second-order systeni, inversion of a
11,476 by 11,476 matrix would be required. Finally, the
parallel cascade method does not require use of a
Gaussian input, nor an input having special probability
density or autocorrelation properties. Rather, the
method can accurately model high-order nonlinear sys-
tems, as well as estimate kernels, for a wide variety of
input excitation [13],{14].

TIME-SERIES ANALYSIS

Let y[n], n=0,....N, now represent given time-series
data, and let (2) represent a parsimonious sinusoidal
series representation which is to be developed for the
time-series. The frequencies of the sinusoids in this
representation will be chosen from a set of candidate
frequencies w,, wg. .... These candidate frequencies
need not be commensurate, nor integral multiples of a
fundamental frequency. The selection of frequencies is
carried out by fast orthogoual search, which was
developed by Korenberg [4],[5] for modeling time-series
data as well as for the difference equation modeling
discussed above.

In the sinusoidal series represented by (2). note that
(3) still holds, and for i= 1.2,...

pzi_lln] = cosw, n

| |
Fig. 8. Parallel cascade second-order kernel estimate for Ex-
ample 3.

Py, [n] = sinw, 1

The w; can be selected by systematically searching
through the set of candidate frequencies wy, wg, ... as

discussed below. It can be shown [4].[5] that adding the
i-th term pair

Ti= Gy ) Py [N+ ay Pyl
to the model of (2) decreases the mean-square error by
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o, = G?[2i-1] D [2i-1,2&-1] + G%[21 D [2i21 (34)
At the stage of adding the i-th term pair. M = 2iin 2).

Tofind o, i2 1, evaluate @,[i for each available (i.e., as
yet unselected) candidate frequency. Choose the can-
didate frequency with largest Q, value, optionally sub-
ject to exceeding a minimum threshold level. For
example, before choosing a candidate frequency for w,

one may optionally require [27] that
G2[M-1] D [M-1,M-1] + G*[M] D [M.M) >
M-2

4 (o 35
N: (yzln] -y GIm D [m,ml) (35)
m=0

which can be derived similarly to (25). If (35) is used,
one should also require that the mse exceed a
threshold level before continuing the model develop-

ment. For shorter records, the factor I% (which cor-

responds to 95% confidence limits) on the right side of
(35) can be replaced by the square of the critical
correlation coefficient value for sample size N+1. Clear-
ly, a factor corresponding to other than 95% confidence
limits can be substituted on the right side of (35).

To evaluate Q[i] in (34) for a given candidate for o,
use the pseudocode from (10) to the line following (15),
but only for m > M-1 (where M = 21). This avoids repeat-
ing calculations previously performed at an earlier
stage of searching. After selecting the candidate for o,
again carry out the pseudocode (for m= M-1) for the
chosen candidate. This is done to properly set the
values of C[m], G[m], Dim,m] and Alm,r], m= M-1, M,
r=0,..., m=1, prior to either searching for w,,. or ter-
minating the process and using (16)-(18) to find the
coefficients a,, in (2). In using the pseudocode, note
that the overbar on the right side of (11), (12), (13) and
(14} now denotes the time-average from n=0ton= N.
For example,
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N

- 1

ulnl = wiq 2 ylnl
n=0

Using the time-average from n=0 to n= N, note that
(24) will give the mean-square error for the sinusoidal
series model in (2). Model development may be stopped
when the model mean-square error is a sufficiently
small percentage of the time-series variance, or if a
preset limit on the number of model frequencies has
been reached. Termination may also occur if no remain-
ing candidate frequency can cause a reduction in mean-
square error exceeding a specified threshold level.
Finally. note that this method of modeling time-series
data can also be applied with unequally-spaced or
missing data.

Fast orthogonal search is capable of much finer fre-
quency resolution than a conventional Fourier series
analysis (see Example following). Moreover, in the well-
known AR and maximum entropy methods, model order
must be selected. and this is also true for the Prony and
Pisarenko methods, which additionally require solution
of a polynomial equation [41]-[44]. In fast orthogonal
search, model order is automatically determined. and
no polynomial equation must be solved.

A method published earlier, by Abraira and Ibarz 1451,
also scans a set of candidate frequencies to choose
successively, via a best-fitness criterion, the significant
frequencies for the sinusoidal series representation.
Their method does not use an orthogonal approach, and
the same frequency can be chosen more than once [45].
The final amplitude of the sinusoidal component at a
selected frequency is the sum of the values determined
each time the frequency is chosen (taking into account
the phase), and is only an approximation to the correct
amplitude. The searching can continue even if each of
the correct frequencies has been selected once, so there
is the possibility of incorrect frequencies being selected.
Since each sinusoidal component selected is subtracted
from the time series, this may introduce incorrect fre-
quencies and undermine subsequent searching. How-
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Fig. 10. Fourier series analysis of the 1 noisy time-series for Ex-
ample 4.

JULY 1991



TABLE I
SINUSOIDAL ANALYSIS FOR EXAMPLE 4

(Five sinusgidﬁg TEQES?LS,N‘R =20 dB)

ever, the method offers greater resolution than the
Fourier series approach, is not limited to use of com-
mensurate frequencies, and does not require the time-
series data to be equally-spaced.

Note that fast orthogonal search need select each
correct frequency only once, and choosing an extra
(incorrect) frequency during the searching does not
introduce error provided the correct frequencies are
eventually chosen. The algorithm will then yield negli-
gible values for the sine and cosine amplitudes at the
incorrect frequency.

Example 4

The improved resolution of fast orthogonal search over
the conventional Fourier series approach is
demonstrated on the 128-point test time-series shown
in Fig. 9. The assumed sampling period is 2 msec, so
that the sampling rate is 500 Hz. The test time-series
consists of five sinusoids with additive noise: the
sinusoids are indicated in Table I, and the additive noise
is zero-mean, Gaussian noise such that the overall SNR
is 20 dB. The SNRs for the individual sinusoids are as
follows (frequency / SNR): 5Hz / -5.4dB, 15Hz / 14.1
dB, 15.5Hz / 14.1 dB, 30 Hz / 8.2 dB, 44 Hz / 0.3 dB.
Without the additive noise the algorithm identifies all
frequencies, amplitudes, and phase angles essentially
without error, even though the number of frequencies
present is not known a priori. With the additive noise
present, the results are shown in Table 1. Note that all
five frequencies were exactly selected, however some
error is noted in the amplitudes and the phase angles
due to the noise.

Note that the frequency resolution of Fourier series
analysis on the same data is 500 Hz / 128 = 3.91 Hz.
The magnitude Fourier series, for comparison, is shown
in Fig. 10; the frequency scale only goes to 60 Hz, rather
than 250 Hz, to give an expanded scale; frequency
components above 60 Hz are insignificant. The five most
dominant frequencies present in the Fourier series are
as follows, in descending order: 15.625 Hz, 31.25 Hz,
27.3438 Hz, 11.7188 Hz and 42.9688 Hz. However, as
shown in Table I, of the five frequencies in the test
time-series, two (namely, 15 Hz and 15.5 Hz) are
separated by only 0.5 Hz. Note that fast orthogonal
search was able to resolve these two frequencies, but
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True Estimated
Frequency in Hz : Amplitude i Phase in Degrees | Frequency in Hz Amplitude Phase in Degrees
5.0 0.1 —68.0 | 5.0 0.1167 ~79.22
15.0 1.0 60.0 ‘ 15.0 0.9307 58.69
15.5 1.0 77775.0 | 15.5 1.0714 72.87
30.0 0.5 15.0 30.0 0.5020 15.730
44.0 0.2 —45.0 44.0 0.1881 —50.45

that the Fourier series analysis was not. Appending
zeros onto the data file or windowing the data before
performing the Fourier series analysis does not improve
the analysis. In this example, the frequency resolution
of fast orthogonal search has been shown to be eight
times better than Fourier series analysis (0.5 Hz versus
3.91 Hz).

In carrying out the fast orthogonal search, 100 can-
didate frequencies equally-spaced between 0.5 Hz and
50 Hz (inclusive) were searched. Higher resolution is
possible (in other examples) by increasing the resolu-
tion of the candidate frequencies. For additional testing
of the resolution of fast orthogonal search, see [46],[47].
Note that fast orthogonal search is not always as ac-
curate as shown in this example, but in extensive
testing has continually surpassed the Fourier series
result. Moreover, in [5] fast orthogonal search was
tested on a 64-point sample sequence used by Kay and
Marple [42] to study several spectral estimation proce-
dures. Fast orthogonal search exhibited significantly
higher resolution than reported [42] for any of the
studied procedures except for the spectral line variant
of the Prony method. Compared with the latter method,
fast orthogonal search showed equivalent accuracy in
estimating frequencies and amplitudes, and much
greater accuracy in estimation of phases.

CONCLUSIONS

In this paper, some recent approaches to nonlinear
system identification, ARMA modeling, and time-series
analysis have been examined. Almost all of these
methods are related by analysis methods based on an
orthogonal search procedure. Sufficient detail and ref-
erences have been furnished to enable ready implemen-
tation, and examples were provided to demonstrate
superiority over established classical techniques.

In the case of ARMA modeling, the ARMA identification
algorithm presented does not require a priori knowledge
of, or assumptions about, the order of the system to be
identified or signal to be modeled. A suboptimal, recur-
sive, pairwise search of the orthogonal candidate data
records is conducted, until a given least-squares
criterion is satisfied. The basic ARMA systems iden-
tification algorithm has been extended for improved
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performance in the presence of additive noise, by the
method of MA noise reduction. Example 1 illustrates
the performance of the ARMA identification algorithm
with noisy data.

The basic ARMA algorithm has also been extended for
the signal modeling case (no access to input data).
Example 2 illustrates the performance of the ARMA
signal modeling algorithm.

In the case of nonlinear systems modeling, discrete-
time Volterra series has been stressed, or rather a more
efficient parallel-cascade approach. The model is con-
structed by adding parallel paths (each consisting of the
cascade of dynamic linear and static nonlinear sys-
tems). Kernel estimation via the parallel-cascade
method is illustrated in Example 3.

In the case of time-series analysis. a non-Fourier
sinusoidal series approach has been stressed. The
relevant frequencies, corresponding amplitudes and
phase angles, are estimated by an orthogonal search
procedure. A search of the candidate sinusoids is con-
ducted until a given mean-square criterion is satisfied.
Time-series modeling via this method is illustrated in
Example 4.
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the column was used as a basis for
a class discussion. In many others,
no doubt, it was used to light the
spring barbecue. Whatever the
opinion, it is clear that we are a
thoughtful and caring society. We
are not a rigid monolith, but a broad
spectrum of people who happen to
share a common professional exper-
tise. We share a commitment and
interest in signal processing, but
when the subject ranges beyond
FFTs and HMMs, our thoughts, ex-
periences, ideas, talents, concerns,
beliefs, and cultures are as diverse
as humanity itself — which, after all,
is what we represent as a profes-
sional society. In short, your letters
confirm that there is no typical “En-
gineer,” and you may show this to
the next person you hear poke fun
at our profession (or better yet, tape
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it to your pocket protector).

Among the letters received was
one comment that has caused me to
consider once again an important
missing feature of this publication.
“l am writing in response to your
editorial,” began one correspondent,
‘... even though I noticed (to my
surprise) that your magazine has no
section for letters to the editor. You
may want to add such a feature in
the interest of fairness.” He’s right.
There should be a column for letters.
Not only to express points of view on
editorial content, but for any reason
that a society member would wish to
share ideas of general interest to the
readership. Dissemination of views
and information about signal
processing is, after all, the primary
mission of this publication. There-
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fore, at the ICASSP '91 meeting of
the Society’s Publication Board in
May, I requested that the institution
of a letters column be considered. I
am pleased to report that approval
has been granted. Between now
and the October issue, we will for-
mulate some guidelines for the
column.

In the meantime, “keep those
cards and letters coming”. Your
comments and criticisms of the
magazine are always appreciated.
But please don’t write to ask
whether you can have my quick-
draw calculator holster. It goes too
nicely with my LED readout tie bar
and my hexadecimal VLSI
wristwatch.

Jack Deller
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