
CONDOR, an new Parallel, Constrained

extension of Powell’s UOBYQA algorithm.

Experimental results and comparison

with the DFO algorithm

 Frank VANDEN BERGHEN and Hugues BERSINI

Université Libre de Bruxelles

Technical Report N°
TR/IRIDIA/2004-11

August 2004

To appear in www.optimization-online.org

Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

CONDOR, an new Parallel, Constrained

extension of Powell’s UOBYQA algorithm.

Experimental results and comparison

with the DFO algorithm.

Frank Vanden Berghen, Hugues Bersini

IRIDIA, Université Libre de Bruxelles

50, av. Franklin Roosevelt

1050 Brussels, Belgium

Tel: +32 2 650 27 29, Fax: 32 2 650 27 15

fvandenb@iridia.ulb.ac.be, bersini@ulb.ac.be

August 1, 2004

Abstract

This paper presents an algorithmic extension of Powell’s UOBYQA
algorithm (”Unconstrained Optimization BY Quadratical Approxima-
tion”). We start by summarizing the original algorithm of Powell and
by presenting it in a more comprehensible form. Thereafter, we report
comparative numerical results between UOBYQA, DFO and a paral-
lel, constrained extension of UOBYQA that will be called in the paper
CONDOR (”COnstrained, Non-linear, Direct, parallel Optimization
using trust Region method for high-computing load function”). The
experimental results are very encouraging and validate the approach.
They open wide possibilities in the field of noisy and high-computing-
load objective functions optimization (from two minutes to several
days) like, for instance, industrial shape optimization based on CFD
(Computation Fluid Dynamic) codes or PDE (partial differential equa-
tions) solvers. Finally, we present a new, easily comprehensible and
fully stand-alone implementation in C++ of the parallel algorithm.

1 Introduction

Powell’s UOBYQA algorithm ([34] or [35]) is a new algorithm for uncon-
strained, direct optimization that take into account the curvature of the
objective function, leading to a high convergence speed. UOBYQA is the
direct successor of COBYLA [31]. Classical quasi-newton methods also use
curvature information ([27, 2, 1, 15, 18]) but they need explicit gradient in-
formation, usually obtained by finite difference. In the field of aerodynamical

1

shape optimization, the objective functions are based on expensive simula-
tion of CFD (computation fluid dynamic) codes (see [41, 28, 13, 29, 30]) or
PDE (partial differential equations) solvers. For such applications, choosing
an appropriate step size for approximating the derivatives by finite differ-
ences is quite delicate: function evaluation is expensive and can be very
noisy. For such type of application, finite difference quasi-newton meth-
ods need to be avoided. Indeed, even if actual derivative information were
available, quasi-Newton methods might be a poor choice because adversely
affected by function inaccuracies (see [17]). Instead, direct optimization
methods [16] are relatively insensitive to the noise. Unfortunately, they
usually require a great amount of function evaluations.

UOBYQA and CONDOR sample the search space, making evaluations
in a way that reduces the influence of the noise. They both construct a
full quadratical model based on Lagrange Interpolation technique [14, 37,
8, 42, 43, 33]. The curvature information is obtained from the quadratical
model. This technique is less sensitive to the noise and leads to high qual-
ity local quadratical models which directly guide the search to the nearest
local optimum. These quadratical models are built using the least number
of evaluations (possibly reusing old evaluations).

DFO [12, 11] is an algorithm by A.R.Conn, K. Scheinberg and Ph.L.
Toint. It’s very similar to UOBYQA and CONDOR. It has been specially
designed for small dimensional problems and high-computing-load objective
functions. In other words, it has been designed for the same kind of prob-
lems that CONDOR. DFO also uses a model build by interpolation. It is
using a Newton polynomial instead of a Lagrange polynomial. When the
DFO algorithm starts, it builds a linear model (using only n + 1 evalua-
tions of the objective function; n is the dimension of the search space) and
then directly uses this simple model to guide the research into the space.
In DFO, when a point is ”too far” from the current position, the model
could be invalid and could not represent correctly the local shape of the
objective function. This ”far point” is rejected and replaced by a closer
point. This operation unfortunately requires an evaluation of the objective
function. Thus, in some situation, it is preferable to lower the degree of
the polynomial which is used as local model (and drop the ”far” point),
to avoid this evaluation. Therefore, DFO is using a polynomial of degree
oscillating between 1 and a ”full” 2. In UOBYQA and CONDOR, we use
the Moré and Sorenson algorithm [26, 9] for the computation of the trust
region step. It is very stable numerically and give very high precision results.
On the other hand, DFO uses a general purpose tool (NPSOL [20]) which
gives high quality results but that cannot be compared to the Moré and
Sorenson algorithm when precision is critical. An other critical difference
between DFO and CONDOR/UOBYQA is the formula used to update the

2

local model. In DFO, the quadratical model built at each iteration is not
defined uniquely. For a unique quadratical model in n variables one needs
at least 1

2(n + 1)(n + 2) = N points and their function values. ”In DFO,
models are often build using many fewer points and such models are not
uniquely defined” (citation from [11]). The strategy used inside DFO is to
select the model with the smallest Frobenius norm of the Hessian matrix.
This update is highly numerically instable [36]. Some recent research at this
subject have maybe found a solution [36] but this is still ”work in progress”.
The model DFO is using can thus be very inaccurate.

In contrast to UOBYQA and CONDOR, DFO uses linear or quadrati-
cal models to guide the search, thus requiring less function evaluations to
build the local models. Based on our experimental results, we surprisingly
discovered that CONDOR used less function evaluations than DFO to reach
an optimum point, despite the fact that the cost to build a local model is
higher (see section 5 presenting numerical results). This is most certainly
due to an heuristic (see section 5.1 at this subject) used inside UOBYQA
and CONDOR which allows to build quadratical models at very ”low price”.

The algorithm used inside UOBYQA is thus a good choice to reduce the
number of function evaluations in the presence of noisy and high computing
load objective functions. Since description of this algorithm in the literature
is hard to find and rather unclear, a first objective of the paper is to provide
an updated and more accessible version of it.

When concerned with CPU time to reach the local optimum, computer
parallelization of the function evaluations is always an interesting road to
pursue. Indeed, PDS (Parallel direct search) largely exploits this paralleliza-
tion to reduce the optimization time. We take a similar road by proposing
an extension of the original UOBYQA that can use several CPU’s in par-
allel: CONDOR. Our experimental results show that this addition makes
CONDOR the fastest available algorithm for noisy, high computing load
objective functions (fastest in terms of number of function evaluations).

In substance, this paper proposes a new, simpler and clearer, parallel
implementation in C++ of UOBYQA: the CONDOR optimizer. A version
of CONDOR allowing constraints is discussed in [40].

3

The paper is structured in the following way:

• Section 1: The introduction.

• Section 2: Basic description of the UOBYQA algorithm with hints
to possible parallelization.

• Section 3: New, more in depth, comprehensible presentation of UOBYQA
with a more precise description of the parallel extension.

• Section 4: In depth description of this parallel extension.

• Section 5: Experimental results: comparison between CONDOR, the
original Powell’s UOBYQA, DFO, LANCELOT, COBYLA, PDS.

• Section 5: How to get the code and conclusions.

2 Basic description of Powell’s UOBYQA algo-

rithm

Let n be the dimension of the search space. Let f(x) be the objective
function to minimize. We want to find x∗ ∈ <n which satisfies:

f(x∗) = min
x

f(x) (1)

In the following algorithm, ρ is the usual trust region radius. We do not
allow ρ to increase because this would necessitate expensive decrease later.
We will introduce ∆, another trust region radius that satisfies ∆ ≥ ρ. The
advantage of ∆ is to allow the length of the steps to exceed ρ and to increase
the efficiency of the algorithm.

Let xstart be the starting point of the algorithm. Let ρstart and ρend be
the initial and final value of the trust region radius ρ.

Definition: The local approximation qk(s) of f(x) is valid in Bk(ρ) (a
ball of radius ρ around xk) when |f(xk + s)− qk(s)| ≤ κρ2 ∀‖s‖ ≤ ρ
where κ is a given constant independent of x.

Basically, Powell’s UOBYQA algorithm does the following (for a more
detailed explanation, see section 3 or [34]):

1. Create an interpolation polynomial q0(s) of degree 2 which interpolates
the objective function around xstart. All the points in the interpolation
set Y (used to build q(x)) are separated by a distance of approxima-
tively ρstart. Set xk = the best point of the objective function known so

4

far. Set ρ0 = ρstart. In the following algorithm, qk(s) is the quadrat-
ical approximation of f(x) around xk: qk(s) = f(xk) + gt

ks + stHks
where gk is an approximation of the gradient of f(x) evaluated at xk

and Hk is an approximation of the Hessian matrix of f(x) evaluated
at xk.

2. Set ∆k = ρk

3. Inner loop: solve the problem for a given precision of ρk.

(a) i. Solve sk = min
s∈<n

qk(s) subject to ‖s‖2 < ∆k.

ii. If ‖sk‖ < 1
2ρk, then break and go to step 3(b) because, in

order to do such a small step, we need to be sure that the
model is valid.

iii. Evaluate the function f(x) at the new position xk + sk. Up-
date (like described in next section, 4(a)viii. to 4(a)x.) the
trust region radius ∆k and the current best point xk using
classical trust region technique. Include the new xk inside
the interpolation set Y . Update qk(s) to interpolate on the
new Y .

iv. If some progress has been achieved (for example, ‖sk‖ > 2ρ
or there was a reduction f(xk+1) < f(xk)), increment k and
go back to step 3(a)i, otherwise continue.

(b) Test the validity of qk(x) in Bk(ρ), like described in [34].

• Model is invalid:
Improve the quality of the model q(x): Remove the worst
point of the interpolation set Y and replace it (one evaluation
required!) with a new point xnew such that: ‖xnew −xk‖ < ρ
and the precision of qk(s) is substantially increased.

• Model is valid:
If ‖sk‖ > ρk go back to step 3(a), otherwise continue.

4. Reduce ρ since the optimization steps sk are becoming very small,
the accuracy needs to be raised.

5. If ρ = ρend stop, otherwise increment k and go back to step 2.

Basically, ρ is the distance (Euclidian distance) which separates the
points where the function is sampled. When the iterations are unsuccessful,
the trust region radius ∆k decreases, preventing the algorithm to achieve
more progress. At this point, loop 3(a)i to 3(a)iv is exited and a function
evaluation is required to increase the quality of the model (step 3(b)). When
the algorithm comes close to an optimum, the step size becomes small. Thus,

5

the inner loop (steps 3(a)i. to 3(a)iv.) is usually exited from step 3(a)ii,
allowing to skip step 3(b) (hoping the model is valid), and directly reducing
ρ in step 4.

The most inner loop (steps 3(a)i. to 3(a)iv.) tries to get from qk(s)
good search directions without doing any extra evaluation to maintain the
quality of qk(s) (The evaluations that are performed on step 3(a)i) have
another goal). Only inside step 3(b), evaluations are performed to increase
this quality (called a ”model step”) and only at the condition that the model
has been proven to be invalid (to spare evaluations!).

Notice the update mechanism of ρ in step 4. This update occurs only
when the model has been validated in the trust region Bk(ρ) (when the loop
3(a) to 3(b) is exited). The function cannot be sampled at point too close to
the current point xk without being assured that the model is valid in Bk(ρ).
This mechanism protects us against noise.

The different evaluations of f(x) are used to:

(a) guide the search to the minimum of f(x) (see inner loop in the steps
3(a)i. to 3(a)iv.). To guide the search, the information gathered until
now and available in qk(s) is exploited.

(b) increase the quality of the approximator qk(x) (see step 3(b)). To
avoid the degeneration of qk(s), the search space needs to be addition-
ally explored.

(a) and (b) are antagonist objectives like frequently encountered in the
exploitation/exploration paradigm. The main idea of the parallelization of
the algorithm is to perform the exploration on distributed CPU’s. Conse-
quently, the algorithm will have better models qk(s) of f(x) available and
choose better search direction, leading to a faster convergence.

UOBYQA and CONDOR are inside the class of algorithm which are
proven to be globally convergent to a local (maybe global) optimum: They
are both using conditional models as described in [12, 8].

3 The UOBYQA algorithm in depth

We will now detail the UOBYQA algorithm [34] and a part of its parallel
extension. As a result of this parallel extension, the points 3, 4(a)i, 4(b), 9
constitute an original contribution of the authors. When only one CPU is
available, these points are simply skipped. The point 4(a)v is also original
and has been added to make the algorithm more robust against noise in

6

the evaluation of the objective function. These points will be detailed in
the next section. The other points of the algorithm belong to the original
UOBYQA.

Let noisea and noiser, be the absolute and relative error on the evalu-
ation of the objective function. These constants are given by the user. By
default, they are null.

1. Set ∆ = ρ, ρ = ρstart and generate a first interpolation set Y =
{x(1), . . . , x(N)} around xstart (with N = (n+1)(n+2)/2). This set is
”poised”, meaning that the Vandermonde determinant of Y is non-null
(see [14, 37]). The set Y is generated using the algorithm described in
[34].

2. In what follows, the index k is always the index of the best point
of the set Y = {x(1), . . . , x(N)}. The points in Y will be noted in
bold with parenthesis around their subscript. Let x(base) := x(k).
Set Fold := f(x(base)). Apply a translation of −x(base) to all the
dataset {x(1), . . . , x(N)} and generate the quadratical polynomial q(x),
which intercepts all the points in the dataset Y . The translation is
achieved to increase the quality of the interpolation. qk(s) is built
using Multivariate Lagrange Interpolation. It means that qk(s) =
∑N

i=1 f(x(i))Pi(s) where the Pi(s) are the Lagrange polynomials as-
sociated to the dataset Y . The Pi(s) have the following property:
Pi(x(j)) = δ(i,j) where δ(i,j) is the Kronecker delta (see [14, 37] about
multivariate Lagrange polynomial interpolation). The complete pro-
cedure is given in [34].

3. Parallel extension: Start the ”parallel computations” on the different
computer nodes. See next section for more details.

4. (a) i. Parallel extension: Check the results of the parallel compu-
tation and use them to increase the quality of qk(s). See next
section for more details.

ii. Calculate the ”Trust region step” s∗: s∗ is the solution of:

min
s∈<n

q(x(k) + s) = min
s∈<n

qk(s) subject to ‖s‖2 < ∆

This is a quadratic program with a non-linear constraint. It’s
solved using Moré and Sorenson algorithm (see [26, 9]). The

7

original implementation of the UOBYQA algorithm uses a
special tri-diagonal decomposition of the Hessian to obtain
high speed (see [32]). CONDOR uses a direct, simpler, im-
plementation of the Moré and Sorenson algorithm.

iii. If ‖s‖ <
ρ

2
, then break and go to step 4(b): the model needs

to be validated before doing such a small step.

iv. Let R := q(x(k)) − q(x(k) + s∗) ≥ 0, the predicted reduction
of the objective function.

v. One original addition to the algorithm is the following:
Let noise := 1

2 max[noisea ∗ (1 + noiser), noiser|f(x(k))|].
If (R < noise), break and go to step 4(b).

vi. Evaluate the objective function f(x) at point x = x(base) +
x(k) + s∗. The result of this evaluation is stored in the vari-
able Fnew.

vii. Compute the agreement r between f(x) and the model q(x):

r =
Fold − Fnew

R

viii. Update the trust region radius ∆:

max[∆, 5
4‖s‖, ρ + ‖s‖] if 0.7 ≤ r,

max[12∆, ‖s‖] if 0.1 < r < 0.7,
1
2‖s‖ if r ≤ 0.1

If (∆ < 1.5ρ), set ∆ := ρ.

ix. Store x(k) + s∗ inside the interpolation dataset Y . To do
so, first, choose the worst point x(t) of the dataset (The ex-
act, detailed algorithm, is given in [34]). This is the point
which gives the highest contribution to following bound on
the interpolation error [33]:

Interpolation
error at point y

= |qk(y)− f(y)| <
M

6

N
∑

j=1

|Pj(y)|‖y−x(j)‖3

(2)

Where M is a bound on the third derivative of f(x): |φ′′′(α)| ≤
M where φ(α) = f(y+αd̄), α ∈ <, d̄ ∈ <n and ‖d̄‖ = 1, and

8

where Pj(y) are the Lagrange Polynomials used to construct
qk(y).(see [14, 37] about multivariate Lagrange polynomial
interpolation).

Secondly, replace the point x(t) by x(k) + s∗ and recalculate
the new quadratic qk(s) which interpolates the new dataset.

The ModelStep is ‖x(t) − (x(k) + s∗)‖

x. Update the index k of the best point in the dataset.
Set Fnew := min[Fold, Fnew].

xi. Update the value M (the bound on the third derivative of
f(x)) using:

Mnew = max

[

Mold,
|qk(x) − f(x)|

1
6

∑N
j=1 |Pj(x)|‖x − x(j)‖3

]

(3)

xii. If there is an improvement in the quality of the solution
(Fnew < Fold) OR if (‖s∗‖ > 2ρ) OR if ModelStep > 2ρ
then go back to point 4(a)i, otherwise, continue.

(b) Parallel extension: Check the results of the parallel computation
and use them to increase the quality of qk(s). See next section
for more details.

(c) The validity of our model in Bk(ρk), a ball of radius ρk around
x(k) now needs to be checked based on equations (6) and (7).

• Model is invalid:
Improve the quality of our model q(x). This is called a
”model improvement step”. Remove the worst point x(j)

of the dataset and replace it by a better point. This better
point is computed using an algorithm described in [34]. If a
new function evaluation has been made, the value of M must
also be updated. Possibly, an update of the index k of the
best point in the dataset Y and Fold is required. Once this
is finished, go back to step 4(a).

• Model is valid:
If ‖s∗‖ > ρ go back to step 4(a), otherwise continue.

5. If ρ = ρend, the algorithm is nearly finished. Go to step 8, otherwise

9

continue to the next step.

6. Update of trust region radius ρ.

ρnew =

ρend if ρend < ρ ≤ 16ρend√
ρend ρ if 16ρend < ρ ≤ 250ρend

0.1ρ if 250ρend < ρ

(4)

Set ∆ := max[
ρ

2
, ρnew]. Set ρ := ρnew.

7. Set x(base) := x(base) + x(k). Apply a translation of −x(k) to qk(s), to
the set of Newton polynomials Pi which defines qk(s) and to the whole
dataset Y = {x(1), . . . , x(N)}. Go back to step 4.

8. The iterations are now complete but one more value of f(x) may be
required before termination. Indeed, it is known from step 4(a)iii and
step 4(a)v of the algorithm that the value of f(x(base)+x(k)+s∗) could
not have been computed. Compute Fnew := f(x(base) + x(k) + s∗).

• if Fnew < Fold, the solution of the optimization problem is x(base)+
x(k) + s∗ and the value of f at this point is Fnew.

• if Fnew > Fold, the solution of the optimization problem is x(base)+
x(k) and the value of f at this point is Fold.

9. Parallel extension: Stop the parallel computations if necessary.

The aim of the parallelization is to evaluate f(x) at positions which
could substantially increase the quality of the approximator qk(s). The way
to choose such positions is explained in section 4.

4 The parallel extension of UOBYQA

We will use a client-server approach. The main node, the server, will run
two concurrent processes:

• The main process on the main computer is the classical non-parallelized
version of the algorithm, described in the previous section. There is
an exchange of information with the second/parallel process on steps
4(a)i and 4(b) of the original algorithm.

10

• The goal of the second/parallel process on the main computer is
to increase the quality of the model qk(s) by using client computers to
sample f(x) at specific interpolation sites.

In an ideal scenario:

• The main process will always stay inside the most inner loop 4(a)i
to 4(a)xii. Hoping that the evaluation on the client computers always
provide a valid local model qk(s), progress will constantly be achieved.

• The main process exits the inner loop at step 4(a)iii: Near an opti-
mum, the model is ideally valid and ρ can be decreased.

The client nodes are performing the following:

1. Wait to receive from the second/parallel process on the server a sam-
pling site (a point).

2. Evaluate the objective function at this site and return immediately
the result to the server.

3. Go to step 1.

Several strategies have been tried to select good sampling sites. We
describe here the most promising one. The second/parallel task is the fol-
lowing:

A. Make a local copy q(copy)(s) of qk(s) (and of the associated Lagrange
Polynomials Pj(x))

B. Make a local copy J (copy) of the dataset J = {x(1), . . . , x(N)}.

C. Find the index j of the point inside J (copy) the further away from x(k).

D. Replace x(j) by a better point x(j)+d which will increase the quality of
the approximation of f(x). The computation of this point is detailed
below.

E. Ask for an evaluation of the objective function at point x(j)+d using a
free client computer to perform the evaluation. If there is still a client
idle, go back to step C.

F. Wait for a node to finish its evaluation of the objective function f(x).
Most of the time, the second/parallel task will be blocked here without
consuming any resources.

11

G. Update q(copy)(x) using the newly received evaluation. Update J (copy).
go to step C.

In the parallel/second process we are always working on a copy of qk(x),
J and Pj,(copy)(x) to avoid any side effect with the main process which is
guiding the search. The communication and exchange of information be-
tween these two processes are done only at steps 4(a)i and 4(b) of the main
process described in the previous section. Each time the main process
checks the results of the parallel computations the following is done:

i. Wait for the parallel/second task to enter the step F described above
and block the parallel task inside this step F for the time needed to
perform the points ii and iii below.

ii. Update of qk(s) using all the points calculated in parallel, discarding
the points that are too far away from x(k) (at a distance greater than
ρ)(The points are inside J (copy)). This update is performed using tech-
nique described in [34]. We will possibly have to update the index k
of the best point in the dataset J and Fold.

iii. Perform operations described in point A & B of the parallel/second
task algorithm above: ”Copy q(copy)(x) from qk(x).
Copy J (copy) from J = {x(1), . . . , x(N)}”.

In step D. of the parallel algorithm, we must find a point which increase
substantially the quality of the local approximation q(copy)(x) of f(x). In
the following, the discovery of this better point is explained. The equation
(2) is used. We will restate it here for clarity:

Interpolation Error
of q(copy) at point y

= |q(copy)(y)−f(y)| <
M

6

N
∑

j=1

|Pj,(copy)(y)|‖y−x(j),(copy)‖3

where M and Pj,(copy) have the same signification as for equation (2). Note
also that we are working on a copy of qk(x), J and Pj(x). In the remain-
ing of the current section, we will drop the (copy) subscript for easier notation.

This equation has a special structure. The contribution to the inter-
polation error of the point x(j) to be dropped is easily separable from the
contribution of the other points of the dataset J , it is:

error due to x(j) =
1

6
M |Pj(y)|‖y − x(j)‖3 (5)

12

If y is inside the ball of radius ρ around xk (xk is the best point found
until now in the second/parallel task), then an upper bound of equation (5)
can be found:

1

6
M max

y
{|Pj(y)|‖y − xk‖3 : ‖y − xk‖ ≤ ρ}

≈ 1

6
M‖x(j) − xk‖3 max

d
{|Pj(xk + d)| : ‖d‖ ≤ ρ}

We are ignoring the dependence of the other Newton polynomials in
the hope of finding a useful technique and cheap to implement. x(j) is thus
replaced in J (copy) by xk +d where d is the solution of the following problem:

max
d

{|Pj(xk + d)| : ‖d‖ ≤ ρ}

The algorithm used to solve this problem is described in [34].

5 Numerical Results

5.1 Results on one CPU

We will now compare CONDOR with UOBYQA [34], DFO [12, 11], PDS
[16], LANCELOT [7] and COBYLA [31] on a part of the Hock and Schit-
tkowski test set [23]. The test functions and the starting points are extracted
from SIF files obtained from CUTEr, a standard test problem database for
non-linear optimization (see [22]). We are thus in perfect standard condi-
tions. The tests problems are arbitrary and have been chosen by A.R.Conn,
K. Scheinberg and Ph.L. Toint. to test their DFO algorithm. The perfor-
mances of DFO are thus expected to be, at least, good. We list the number
of function evaluations that each algorithm took to solve the problem. We
also list the final function values that each algorithm achieved. We do not
list the CPU time, since it is not relevant in our context. The ”*” indi-
cates that an algorithm terminated early because the limit on the number
of iterations was reached. The default values for all the parameters of each
algorithm is used. The stopping tolerance of DFO was set to 10−4, for the
other algorithms the tolerance was set to appropriate comparable default
values. The comparison between the algorithms is based on the number of
function evaluations needed to reach the SAME precision. For the most fair
comparison with DFO, the stopping criteria (ρend) of CONDOR has been
chosen so that CONDOR is always stopping with a little more precision
on the result than DFO. This precision is some time insufficient to reach
the true optima of the objective function. In particular, in the case of the
problems GROWTHLS and HEART6LS, the CONDOR algorithm can find
a better optimum after some more evaluations (for a smaller ρend). All algo-
rithms were implemented in Fortran 77 in double precision except COBYLA

13

which is implemented in Fortran 77 in single precision and CONDOR which
is written in C++ (in double precision). The trust region minimization sub-
problem of the DFO algorithm is solved by NPSOL [20], a fortran 77 non-
linear optimization package that uses an SQP approach. For CONDOR, the
number in parenthesis indicates the number of function evaluation needed
to reach the optimum without being assured that the value found is the real
optimum of the function. For example, for the WATSON problem, we find
the optimum after (580) evaluations. CONDOR still continues to sample
the objective function, searching for a better point. It’s loosing 87 evalua-
tions in this search. The total number of evaluation (reported in the first
column) is thus 580+87=667.

CONDOR and UOBYQA are both based on the same algorithm and
have nearly the same behavior.

PDS stands for ”Parallel Direct Search” [16]. The number of function
evaluations is high and so the method doesn’t seem to be very attractive.
On the other hand, these evaluations can be performed on several CPU’s
reducing considerably the computation time.

Lancelot [7] is a code for large scale optimization when the number of
variable is n > 10000 and the objective function is easy to evaluate (less
than 1ms.). Its model is build using finite differences and BFGS update.
This algorithm has not been design for the kind of application we are inter-
ested in and is thus performing accordingly.

COBYLA [31] stands for ”Constrained Optimization by Linear Approx-
imation” by Powell. It is, once again, a code designed for large scale op-
timization. It is a derivative free method, which uses linear polynomial
interpolation of the objective function.

DFO [12, 11] is an algorithm by A.R.Conn, K. Scheinberg and Ph.L.
Toint. It has already been described in section 1. In CONDOR and in
UOBYQA the validity of the model is checked using two equations:

All the interpolation
points must be close to
the current point x(k)

: ‖x(j) − x(k)‖ ≤ 2ρ j = 1, . . . , N (6)

Powell’s
heuristic

:
M

6
‖x(j)−x(k)‖3 max

d
{|Pj(x(k)+d)| : ‖d‖ ≤ ρ} ≤ ε j = 1, . . . , N

(7)

using notation of section 3. See [34] to know how to compute ε. The first
equation (6) is also used in DFO. The second equation (7) (which is similar

Number of Function Evaluation final function value

Name Dim CONDOR UOB. DFO PDS LAN. COB. CONDOR UOBYQA DFO PDS LANCELOT COBYLA

ROSENBR 2 82 (80) 87 81 2307 94 8000 2.0833e-08 4.8316e-08 1.9716e-07 1.2265e-07 5.3797e-13 4.6102e+04*

SNAIL 2 316 (313) 306 246 2563 715 8000 9.3109e-11 1.8656e-10 1.2661e-08 2.6057e-10 4.8608e+00 7.2914e+00*

SISSER 2 40 (40) 31 27 1795 33 46 8.7810e-07 2.5398e-07 1.2473e-06 9.3625e-20 1.3077e-08 1.1516e-20

CLIFF 2 145 (81) 127 75 3075 84 36 1.9978e-01 1.9978e-01 1.9979e-01 1.9979e-01 1.9979e-01 2.0099e-01

HAIRY 2 47 (47) 305 51 2563 357 3226 2.0000e+01 2.0000e+01 2.0000e+01 2.0000e+01 2.0000e+01 2.0000e+01

PFIT1LS 3 153 (144) 158 180 5124 216 8000 2.9262e-04 1.5208e-04 4.2637e-04 3.9727e-06 1.1969e+00 2.8891e-02*

HATFLDE 3 96 (89) 69 95 35844 66 8000 5.6338e-07 6.3861e-07 3.8660e-06 1.7398e-05 5.1207e-07 3.5668e-04*

SCHMVETT 3 32 (31) 39 53 2564 32 213 -3.0000e+00 3.0000e+00 -3.0000e+00 -3.0000e+00 -3.0000e+00 -3.0000e+00

GROWTHLS 3 104 (103) 114 243 2308 652 6529 1.2437e+01 1.2446e+01 1.2396e+01 1.2412e+01 1.0040e+00 1.2504e+01

GULF 3 170 (160) 207 411 75780 148 8000 2.6689e-09 3.8563e-08 1.4075e-03 3.9483e-02 7.0987e-17 6.1563e+00*

BROWNDEN 4 91 (87) 107 110 5381 281 540 8.5822e+04 8.5822e+04 8.5822e+04 8.5822e+04 8.5822e+04 8.5822e+04

EIGENALS 6 123 (118) 119 211 5895 35 1031 3.8746e-09 2.4623e-07 9.9164e-07 1.1905e-05 2.0612e-16 7.5428e-08

HEART6LS 6 346 (333) 441 1350 37383 6652 8000 4.3601e-01 4.0665e-01 4.3167e-01 1.6566e+00 4.1859e-01 4.1839e+00*

BIGGS6 6 284 (275) 370 1364 31239 802 8000 1.1913e-05 7.7292e-09 1.7195e-05 7.5488e-05 8.4384e-12 8.3687e-04*

HART6 6 64 (64) 64 119 6151 57 124 -3.3142e+00 -3.2605e+00 -3.3229e+00 -3.3229e+00 -3.3229e+00 -3.3229e+00

CRAGGLVY 10 545 (540) 710 1026 13323 77 1663 1.8871e+00 1.8865e+00 1.8866e+00 1.8866e+00 1.8866e+00 1.8866e+00

VARDIM 10 686 (446) 880 2061 33035 165 4115 8.7610e-13 1.1750e-11 2.6730e-07 8.5690e-05 1.8092e-26 4.2233e-06

MANCINO 10 184 (150) 143 276 11275 88 249 3.7528e-09 6.1401e-08 1.5268e-07 2.9906e-04 2.2874e-16 2.4312e-06

POWER 10 550 (494) 587 206 13067 187 368 9.5433e-07 2.0582e-07 2.6064e-06 1.6596e-13 8.0462e-09 6.8388e-18

MOREBV 10 110 (109) 113 476 75787 8000 8000 1.0100e-07 1.6821e-05 6.0560e-07 1.0465e-05 1.9367e-13 2.2882e-06*

BRYBND 10 505 (430) 418 528 128011 8000 8000 4.4280e-08 1.2695e-05 9.9818e-08 1.9679e-02 7.5942e-15 8.2470e-03*

BROWNAL 10 331 (243) 258 837 14603 66 103 4.6269e-09 4.1225e-08 9.2867e-07 1.3415e-03 1.1916e-11 9.3470e-09

DQDRTIC 10 201 (79) 80 403 74507 33 7223 2.0929e-18 1.1197e-20 1.6263e-20 1.1022e-04 1.6602e-23 3.8218e-06

WATSON 12 667 (580) 590 1919 76813 200 8000 7.9451e-07 2.1357e-05 4.3239e-05 2.5354e-05 2.0575e-07 7.3476e-04*

DIXMAANK 15 964 (961) 1384 1118 63504 2006 2006 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0001e+00

FMINSURF 16 695 (615) 713 1210 21265 224 654 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

Total Number of

Function Evaluation
7531 (6612) 8420 14676 > 20000

Figure 1: Comparative results between CONDOR, UOBYQA, DFO, PDS, LANCELOT and COBYLA on one CPU.

to equation (2)) is NOT used in DFO. This last equation allows us to ”keep
far points” inside the model, still being assured that it is valid. It allows us
to have a ”full” polynomial of second degree for a ”cheap price”. The DFO
algorithm cannot use equation 7 to check the validity of its model because
the variable ε (which is computed in UOBYQA and in CONDOR as a by-
product of the computation of the ”Moré and Sorenson Trust Region Step”)
is not cheaply available. In DFO, the trust region step is calculated using
an external tool: NPSOL [20]. ε is difficult to obtain and is not used.

UOBYQA and CONDOR are always using a full quadratic model. This
enables us to compute Newton’s steps. The Newton’s steps have a proven
quadratical convergence speed [15]. Unfortunately, some evaluations of the
objective function are lost to build the quadratical model. So, we only obtain
near quadratic speed of convergence. We have Q-superlinear convergence
(see original paper of Powell [34]). (In fact the convergence speed is often
directly proportional to the quality of the approximation Hk of the real
Hessian matrix of f(x)). Usually, the price (in terms of number of function
evaluations) to construct a good quadratical model is very high but using
equation (7), UOBYQA and CONDOR are able to use very few function
evaluations to update the local quadratical model.

When the dimension of the search space is greater than 25, the time
needed to start, building the first quadratic, is so important (N evaluations)
that DFO may becomes attractive again. Especially, if you don’t want the
optimum of the function but only a small improvement in a small time. If
several CPU’s are available, then CONDOR once again imposes itself. The
function evaluations needed to build the first quadratic are parallelized on all
the CPU’s without any loss of efficiency when the number of CPU increases
(the maximum number of CPU is N + 1). This first construction phase
has a great parallel efficiency, as opposed to the rest of the optimization
algorithm where the efficiency becomes soon very low (with the number of
CPU increasing). In contrast to CONDOR, the DFO algorithm has a very
short initialization phase and a long research phase. This last phase can’t
be parallelized very well. Thus, when the number of CPU’s is high, the most
promising algorithm for parallelization is CONDOR. A parallel version of
CONDOR has been implemented. Very encouraging experimental results
on the parallel code are given in the next section.

When the local model is not convex, no second order convergence proof
(see [10]) is available. It means that, when using a linear model, the opti-
mization process can prematurely stop. This phenomenon *can* occur with
DFO which uses from time to time a simple linear model. CONDOR is very
robust and always converges to a local optimum (extensive numerical tests
have been made [40]).

16

5.2 Parallel results

We are using the same test conditions as for the previous section (standard
objective functions with standard starting points).

Since the objective function is assumed to be time-expensive to evaluate,
we can neglect the time spent inside the optimizer and inside the network
transmissions. To be able to make this last assumption (negligible network
transmissions times), a wait loop of 1 second is embedded inside the code
used to evaluate the objective function (only 1 second: to be in the worst
case possible).

Table 2 indicates the number of function evaluations performed on the
master CPU (to obtain approximatively the total number of function eval-
uations cumulated over the master and all the slaves, multiply the given
number on the list by the number of CPU’s). The CPU time is thus directly
proportional to the numbers listed in columns 3 to 5 of the table 2.

Suppose a function evaluation takes 1 hour. The parallel/second process
on the main computer has asked 59 minutes ago to a client to perform one
such evaluation. We are at step 4(a)i of the main algorithm. We see that
there are no new evaluation available from the client computers. Should
we go directly to step 4(a)ii and use later this new information, or wait
1 minute? The response is clear: wait a little. This bad situation occurs
very often in our test examples since every function evaluation takes exactly
the same time (1 second). But what’s the best strategy when the objective
function is computing, randomly, from 40 to 80 minutes at each evaluation
(this is for instance the case for objective functions which are calculated
using CFD techniques)? The response is still to investigate. Currently,
the implemented strategy is: never wait. Despite, this simple strategy, the
current algorithm gives already some non-negligible improvements.

5.3 Noisy optimization

We will assume that objective functions derived from CFD codes have usu-
ally a simple shape but are subject to high-frequency, low amplitude noise.
This noise prevents us to use simple finite-differences gradient-based algo-
rithms. Finite-difference is highly sensitive to the noise. Simple Finite-
difference quasi-Newton algorithms behave so badly because of the noise,
that most researchers choose to use optimization techniques based on GA,NN,...
[41, 13, 29, 30]. The poor performances of finite-differences gradient-based
algorithms are either due to the difficulty in choosing finite-difference step

17

Number of Function

Evaluations on the

main node

final function valueName Dim

1CPU 2CPU 3CPU 1 CPU 2 CPU 3 CPU

ROSENBR 2 82 81 70 2.0833e-08 5.5373e-09 3.0369e-07

SNAIL 2 314 284 272 9.3109e-11 4.4405e-13 6.4938e-09

SISSER 2 40 35 40 8.7810e-07 6.7290e-10 2.3222e-12

CLIFF 2 145 87 69 1.9978e-01 1.9978e-01 1.9978e-01

HAIRY 2 47 35 36 2.0000e+01 2.0000e+01 2.0000e+01

PFIT1LS 3 153 91 91 2.9262e-04 1.7976e-04 2.1033e-04

HATFLDE 3 96 83 70 5.6338e-07 1.0541e-06 3.2045e-06

SCHMVETT 3 32 17 17 -3.0000e+00 -3.0000e+00 -3.0000e+00

GROWTHLS 3 104 85 87 1.2437e+01 1.2456e+01 1.2430e+01

GULF 3 170 170 122 2.6689e-09 5.7432e-04 1.1712e-02

BROWNDEN 4 91 60 63 8.5822e+04 8.5826e+04 8.5822e+04

EIGENALS 6 123 77 71 3.8746e-09 1.1597e-07 1.5417e-07

HEART6LS 6 346 362 300 4.3601e-01 4.1667e-01 4.1806e-01

BIGGS6 6 284 232 245 1.1913e-05 1.7741e-06 4.0690e-07

HART6 6 64 31 17 -3.3142e+00 -3.3184e+00 -2.8911e+00

CRAGGLVY 10 545 408 339 1.8871e+00 1.8865e+00 1.8865e+00

VARDIM 10 686 417 374 8.7610e-13 3.2050e-12 1.9051e-11

MANCINO 10 184 79 69 3.7528e-09 9.7042e-09 3.4434e-08

POWER 10 550 294 223 9.5433e-07 3.9203e-07 4.7188e-07

MOREBV 10 110 52 43 1.0100e-07 8.0839e-08 9.8492e-08

BRYBND 10 505 298 198 4.4280e-08 3.0784e-08 1.7790e-08

BROWNAL 10 331 187 132 4.6269e-09 1.2322e-08 6.1906e-09

DQDRTIC 10 201 59 43 2.0929e-18 2.0728e-31 3.6499e-29

WATSON 12 667 339 213 7.9451e-07 1.1484e-05 1.4885e-04

DIXMAANK 15 964 414 410 1.0000e+00 1.0000e+00 1.0000e+00

FMINSURF 16 695 455 333 1.0000e+00 1.0000e+00 1.0000e+00

Total Number of

Function Evaluation
7531 4732 3947

Figure 2: Improvement due to parallelism

18

sizes for such a rough function, or the often cited tendency of derivative-
based methods to converge to a local optimum [4]. Gradient-based algo-
rithms can still be applied but a clever way to retrieve the derivative infor-
mation must be used. One such algorithm is DIRECT [21, 24, 5] which is
using a technique called implicit filtering. This algorithm makes the same
assumption about the noise (low amplitude, high frequency) and has been
successful in many cases [5, 6, 38]. For example, this optimizer has been
used to optimize the cost of fuel and/or electric power for the compressor
stations in a gas pipeline network [6]. This is a two-design-variables opti-
mization problem. You can see in the right of figure 5 a plot of the objective
function. Notice the simple shape of the objective function and the small
amplitude, high frequency noise. Another family of optimizers is based on
interpolation techniques. DFO, UOBYQA and CONDOR belongs to this
last family. DFO has been used to optimize (minimize) a measure of the
vibration of a helicopter rotor blade [4]. This problem is part of the Boe-
ing problems set [3]. The blade are characterized by 31 design variables.
CONDOR will soon be used in industry on a daily basis to optimize the
shape of the blade of a centrifugal impeller [28]. All these problems (gas
pipeline, rotor blade and impeller blade) have an objective function based
on CFD code and are both solved using gradient-based techniques. In par-
ticular, on the rotor blade design, a comparative study between DFO and
other approaches like GA, NN,... has demonstrated the clear superiority of
gradient-based techniques approach combined with interpolation techniques
[4].

We will now illustrate the performances of CONDOR in two simple cases
which have sensibly the same characteristics as the objective functions en-
countered in optimization based on CFD codes. The functions, the ampli-
tude of the artificial noise applied to the objective functions (uniform noise
distribution) and all the parameters of the tests are summarized in table
5.3. In this table ”NFE” stands for Number of Function Evaluations. Each
columns represents 50 runs of the optimizer.

A typical run for the optimization of the noisy Rosenbrock function is
given in the left of figure 4. Four typical runs for the optimization of the sim-
ple noisy quadratic in four dimension are given in the right of figure 4. The
noise on this four runs has an amplitude of 1e-4. In these conditions, CON-
DOR stops in average after 100 evaluations of the objective function but
we can see in figure 4 that we usually already have found a quasi-optimum
solution after only 45 evaluations.

As expected, there is a clear relationship between the noise applied on
the objective function and the average best value found by the optimizer.
This relationship is illustrated in the left of figure 4. From this figure and

19

Objective function Rosenbrock A simple quadratic:

4
∑

i=1

(xi − 2)

starting point (−1.2 1)t (0 0 0 0)t

ρstart 1

ρend 1e-4

96.28 82.04 89.1 90.7 99.4 105.36
average NFE

(88.02) (53.6) (62.20) (64.56) (66.84) (68.46)

max NFE 105 117 116 113 129 124

min NFE 86 58 74 77 80 91

average best val 2.21e-5 6.5369e-7 3.8567e-6 8.42271e-5 8.3758e-4 1.2699e-2

noise 1e-4 1e-5 1e-4 1e-3 1e-2 1e-1

Figure 3: Noisy optimization.

0 20 40 60 80 100 120 140
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0 20 40 60 80 100 120 140 160 180 200
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Figure 4: On the left: A typical run for the optimization of the noisy Rosen-
brock function. On the right:Four typical runs for the optimization of the
simple noisy quadratic (noise=1e-4).

from the table 5.3 we can see the following: When you have a noise of 10n+2,
the difference between the best value of the objective function found by the
optimizer AND the real value of the objective function at the optimum is
around 10n. In other words, in our case, if you apply a noise of 10−2, you
will get a final value of the objective function around 10−4. Obviously,
this strange result only holds for this simple objective function (the simple
quadratic) and these particular testing conditions. Nevertheless, the robust-
ness against noise is impressive.

If this result can be generalized, it will have a great impact in the field
of CFD shape optimization. This simply means that if you want a gain of
magnitude 10n in the value of the objective function, you have to compute
your objective function with a precision of at least 10n+2. This gives you an
estimate of the precision at which you have to calculate your objective func-
tion. Usually, the more precision, the longer the evaluations are running.
We are always tempted to lower the precision to gain in time. If this strange

20

10
−5

10
−4

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Figure 5: On the left: The relation between the noise (X axis) and the
average best value found by the optimizer (Y axis). On the right: Typical
shape of objective function derived from CFD analysis.

result can be generalized, we will be able to adjust tightly the precision and
we will thus gain a precious time.

6 Conclusions

Given the search space comprised between 2 and 20 and given some noise
of small amplitude and high frequency on the objective function evalua-
tion, among the best optimizer available are UOBYQA and its parallel,
constrained extension CONDOR. When several CPU’s are used, the exper-
imental results tend to show that CONDOR becomes the fastest optimizer
in its category(fastest in terms of number of function evaluations).

Some improvements are still possible:

• Add the possibility to start with a linear model, using a stable update
inspired by [36].

• Use a better strategy for the parallel case (see end of section 5.2)

• Currently the trust region is a simple ball (this is linked to the L2-
norm ‖s‖2 used in step 4(a)ii of the algorithm). It would be interesting
to have a trust region which reflects the underlying geometry of the
model and not give undeserved weight to certain directions (for exam-
ple, using a H-norm) (see [9]). This improvement will have a small
effect provided the variables have already been correctly normalized.

Some research can also be made in the field of kriging models (see [4]).
These models need very few ”model improvement steps” to obtain a good

21

validity. The validity of the approximation can also easily be checked.

The code of the optimizer is a complete C/C++ stand-alone package
written in pure structural programmation style. There is no call to fortran,
external, unavailable, copyrighted, expensive libraries. You can compile it
under UNIX or Windows. The only library needed is the standard TCP/IP
network transmission library based on sockets (only in the case of the par-
allel version of the code) which is available on almost every platform. You
don’t have to install any special library such as MPI or PVM to build the
executables. The client on different platforms/OS’es can be mixed together
to deliver a huge computing power. The full description of the algorithm
code can be found in [39].

The code has been highly optimized (with extended use of memcpy func-
tion, special fast matrix manipulation, fast pointer arithmetics, and so on...).
However, BLAS libraries [25] have not been used to allow a full Object-
Oriented approach. Anyway, the dimension of the problems is rather low so
BLAS is nearly un-useful. OO style programming allows a better compre-
hension of the code for the possible reader.

A small C++ SIF-file reader has also been implemented (to be able to
use the problems coded in SIF from the CUTEr database, [33]). An AMPL
interface [19] has also been implemented.

The fully stand-alone code is currently available at the homepage of the
first author: http://iridia.ulb.ac.be/∼fvandenb/

References

[1] Aemdesign. URL: http://www.aemdesign.com/FSQPapplref.htm.

[2] Paul T. Boggs and Jon W. Tolle. Sequential Quadratic Programming.
Acta Numerica, pages 1–000, 1996.

[3] Andrew J. Booker, A.R. Conn, J.E. Dennis Jr., Paul D. Frank, Michael
Trosset, Virginia Torczon, and Michael W. Trosset. Global model-
ing for optimization: Boeing/ibm/rice collaborative project 1995 final
report. Technical Report ISSTECH-95-032, Boeing Information Sup-
port Services, Research and technology, Box 3707, M/S 7L-68, Seattle,
Washington 98124, December 1995.

[4] Andrew J. Booker, J.E. Dennis Jr., Paul D. Frank, David B. Serafini,
Virginia Torczon, and Michael W. Trosset. Optimization using surro-
gate objectives on a helicopter test example. Computational Methods
in Optimal Design and Control, pages 49–58, 1998.

22

[5] D. M. Bortz and C. T. Kelley. The Simplex Gradient and Noisy Opti-
mization Problems. Technical Report CRSC-TR97-27, North Carolina
State University, Department of Mathematics, Center for Research in
Scientific Computation Box 8205, Raleigh, N. C. 27695-8205, Septem-
ber 1997.

[6] R. G. Carter, J. M. Gablonsky, A. Patrick, C. T. Kelley, and O. J.
Eslinger. Algorithms for Noisy Problems in Gas Transmission Pipeline
Optimization. Optimization and Engineering, 2:139–157, 2001.

[7] Andrew R. Conn, Nicholas I.M. Gould, and Philippe L. Toint.
LANCELOT: a Fortran package for large-scale non-linear optimization
(Release A). Springer Verlag, HeidelBerg, Berlin, New York, springer
series in computational mathematics edition, 1992.

[8] Andrew R. Conn, Nicholas I.M. Gould, and Philippe L. Toint. Trust-
region Methods. SIAM Society for Industrial & Applied Mathematics,
Englewood Cliffs, New Jersey, mps-siam series on optimization edition,
2000. Chapter 9: conditional model, pp. 307–323.

[9] Andrew R. Conn, Nicholas I.M. Gould, and Philippe L. Toint. Trust-
region Methods. SIAM Society for Industrial & Applied Mathematics,
Englewood Cliffs, New Jersey, mps-siam series on optimization edition,
2000. The ideal Trust Region: pp. 236–237.

[10] Andrew R. Conn, Nicholas I.M. Gould, and Philippe L. Toint. Trust-
region Methods. SIAM Society for Industrial & Applied Mathematics,
Englewood Cliffs, New Jersey, mps-siam series on optimization edition,
2000. Note on convex models, pp. 324–337.

[11] Andrew R. Conn, Nicholas I.M. Gould, and Philippe L. Toint. A Deriva-
tive Free Optimization Algorithm in Practice. Technical report, Depart-
ment of Mathematics, University of Namur, Belgium, 98. Report No.
98/11.

[12] Andrew R. Conn, K. Scheinberg, and Philippe L. Toint. Recent progress
in unconstrained nonlinear optimization without derivatives. Mathe-
matical Programming, 79:397–414, 1997.

[13] R. Cosentino, Z. Alsalihi, and R. Van Den Braembussche. Expert Sys-
tem for Radial Impeller Optimisation. In Fourth European Conference
on Turbomachinery, ATI-CST-039/01, Florence,Italy, 2001.

[14] Carl De Boor and A. A Ron. On multivariate polynomial interpolation.
Constr. Approx., 6:287–302, 1990.

23

[15] J.E. Dennis Jr. and Robert B. Schnabel. Numerical Methods for un-
constrained Optimization and nonlinear Equations. SIAM Society for
Industrial & Applied Mathematics, Englewood Cliffs, New Jersey, clas-
sics in applied mathematics, 16 edition, 1996.

[16] J.E. Dennis Jr. and V. Torczon. Direct search methods on parallel
machines. SIAM J. Optimization, 1(4):448–474, 1991.

[17] J.E. Dennis Jr. and H.F. Welaker. Inaccurracy in quasi-Newton meth-
ods: local improvement theroems. Mathematical programming Study,
22:70–85, 1984.

[18] R. Fletcher. Practical Methods of optimization. a Wiley-Interscience
publication, Great Britain, 1987.

[19] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A
Modeling Language for Mathematical Programming. Duxbury Press /
Brooks/Cole Publishing Company, 2002.

[20] P.E. Gill, W. Murray, M.A. Saunders, and Wright M.H. Users’s guide
for npsol (version 4.0): A fortran package for non-linear programming.
Technical report, Department of Operations Research, Stanford Uni-
versity, Stanford, CA94305, USA, 1986. Report SOL 862.

[21] P. Gilmore and C. T. Kelley. An implicit filtering algorithm for op-
timization of functions with many local minima. SIAM Journal of
Optimization, 5:269–285, 1995.

[22] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. CUTEr
(and SifDec), a Constrained and Unconstrained Testing Environment,
revisited∗. Technical report, Cerfacs, 2001. Report No. TR/PA/01/04.

[23] W. Hock and K. Schittkowski. Test Examples for Nonlinear Program-
ming Codes. Lecture Notes en Economics and Mathematical Systems,
187, 1981.

[24] C. T. Kelley. Iterative Methods for Optimization, volume 18 of Frontiers
in Applied Mathematics. 1999.

[25] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear
Algebra Subprograms for FORTRAN usage. ACM Trans. Math. Soft.,
5:308–323, 1979.

[26] J.J. Moré and D.C. Sorensen. Computing a trust region step. SIAM
journal on scientif and statistical Computing, 4(3):553–572, 1983.

[27] Eliane R. Panier and André L. Tits. On combining feasibility, Descent
and Superlinear Convergence in Inequality Contrained Optimization.
Mathematical Programming, 59:261–276, 1995.

24

[28] S. Pazzi, F. Martelli, V. Michelassi, Frank Vanden Berghen, and Hugues
Bersini. Intelligent Performance CFD Optimisation of a Centrifugal
Impeller. In Fifth European Conference on Turbomachinery, Prague,
CZ, March 2003.

[29] Stphane Pierret and Ren Van den Braembussche. Turbomachinery
blade design using a Navier-Stokes solver and artificial neural network.
Journal of Turbomachinery, ASME 98-GT-4, 1998. publication in the
transactions of the ASME: ” Journal of Turbomachinery ”.

[30] C. Poloni. Multi Objective Optimisation Examples: Design of a Lami-
nar Airfoil and of a Composite Rectangular Wing. Genetic Algorithms
for Optimisation in Aeronautics and Turbomachinery, 2000. von Kar-
man Institute for Fluid Dynamics.

[31] M.J.D. Powell. A direct search optimization method that models the
objective and constraint functions by linar interpolation. In Advances in
Optimization and Numerical Analysis, Proceedings of the sixth Work-
shop on Optimization and Numerical Analysis, Oaxaca, Mexico, volume
275, pages 51–67, Dordrecht, NL, 1994. Kluwer Academic Publishers.

[32] M.J.D. Powell. The use of band matrices for second derivative ap-
proximations in trust region algorithms. Technical report, Department
of Applied Mathematics and Theoretical Physics, University of Cam-
bridge, England, 1997. Report No. DAMTP1997/NA12.

[33] M.J.D. Powell. On the Lagrange function of quadratic models that
are defined by interpolation. Technical report, Department of Applied
Mathematics and Theoretical Physics, University of Cambridge, Eng-
land, 2000. Report No. DAMTP2000/10.

[34] M.J.D. Powell. UOBYQA: Unconstrained Optimization By Quadratic
Approximation. Technical report, Department of Applied Mathemat-
ics and Theoretical Physics, University of Cambridge, England, 2000.
Report No. DAMTP2000/14.

[35] M.J.D. Powell. UOBYQA: Unconstrained Optimization By Quadratic
Approximation. Mathematical Programming, B92:555–582, 2002.

[36] M.J.D. Powell. On updating the inverse of a KKT matrix. Technical
report, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, England, 2004. Report No. DAMTP2004/01.

[37] Thomas Sauer and Yuan Xu. On multivariate lagrange interpolation.
Math. Comp., 64:1147–1170, 1995.

25

[38] D. E. Stoneking, G. L. Bilbro, R. J. Trew, P. Gilmore, and C. T. Kel-
ley. Yield optimization Using a gaAs Process Simulator Coupled to a
Physical Device Model. IEEE Transactions on Microwave Theory and
Techniques, 40:1353–1363, 1992.

[39] Frank Vanden Berghen. Intermediate Report on the develop-
ment of an optimization code for smooth, continuous objective
functions when derivatives are not available. Technical report,
IRIDIA, Université Libre de Bruxelles, Belgium, 2003. Available at
http://iridia.ulb.ac.be/∼fvandenb/work/dea/.

[40] Frank Vanden Berghen. Optimization algorithm for Non-
Linear, Constrained, Derivative-free optimization of Continuous,
High-computing-load Functions. Technical report, IRIDIA, Uni-
versité Libre de Bruxelles, Belgium, 2004. Available at
http://iridia.ulb.ac.be/∼fvandenb/work/thesis/.

[41] J. F. Wanga, J. Periaux, and Sefriouib M. Parallel evolutionary algo-
rithms for optimization problems in aerospace engineering. Journal of
Computational and Applied Mathematics, 149, issue 1:155–169, Decem-
ber 2002.

[42] D. Winfield. Function and functional optimization by interpolation in
data tables. PhD thesis, Harvard University, Cambridge, USA, 1969.

[43] D. Winfield. Function minimization by interpolation in a data table.
Journal of the Institute of Mathematics and its Applications, 12:339–
347, 1973.

26

